1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
|
///
restart
uninstallPackage "RandomComplexes"
restart
installPackage "RandomComplexes"
check("RandomComplexes", UserMode=>true)
loadPackage("RandomComplexes", Reload=>true)
viewHelp "RandomComplexes"
///
newPackage(
"RandomComplexes",
Version => "0.2",
Date => "4 April 2018",
Authors => {{Name => "Frank-Olaf Schreyer",
Email => "schreyer@math.uni-sb.de",
HomePage => "http://www.math.uni-sb.de/ag/schreyer/"},
{Name => "Michael E. Stillman",
Email => "mike@math.cornell.edu",
HomePage => "http://www.math.cornell.edu/People/Faculty/stillman.html"}
},
Headline => "random complexes over fields or the integers",
Keywords => {"Examples and Random Objects"},
PackageExports => {"SimplicialComplexes"},
PackageImports => {"LLLBases"}
)
export {
"histogram",
"maximalEntry",
"testTimeForLLLonSyzygies",
"randomChainComplex",
"randomSimplicialComplex",
"disturb",
-- "oneMatrix",
"normalize",
"WithLLL",
"ZeroMean",
"Discrete",
"Continuous"
}
histogram=method()
histogram(List,ZZ) := (L,n) -> (
-- L list with entries in RR, QQ or ZZ
ma:=max L;
mi:=min L;
delta:= (ma-mi)/n;
L1:=prepend(0,append(apply(n-1,i->#select(L,l-> l<=mi+(i+1)*delta)),#L));
apply(n,i->L1_(i+1)-L1_i)
)
TEST ///
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
M=(randomChainComplex({50,50},{50},ZeroMean=>true)).dd_1;
(svds,U,Vt)=SVD(M**RR_53);
maximalEntry M
L=svds/log
histogram(svds/log,10)
D=diagonalMatrix apply(100,i->2^i);
histogram(first SVD(D*M**RR_53)/log,10)
numericRank(M*D**RR_53)
histogram(first SVD(M*D**RR_53)/log,10)
D=diagonalMatrix apply(100,i->(i+1)^10);
histogram(first SVD(M*D**RR_53)/log,10)
numericRank(M*D**RR_53)
///
maximalEntry=method()
maximalEntry(Matrix) := m -> (
max(flatten entries m/abs)+0.0)
maximalEntry(ChainComplex) := C -> (
R:= ring C;
if not( R === ZZ or R === QQ or R === RR_53 ) then
error "expect a ChainComplex over ZZ ,QQ or RR_53";
for i from min C+1 to max C list maximalEntry C.dd_i)
disturb = method(Options => {Strategy => Discrete})
disturb(ChainComplex,RR) := opts -> (C,epsilon) -> (
chainComplex for i from 1 to length C list (
c := rank C_(i-1);
d := rank C_i;
e := maximalEntry C.dd_i;
entry := null;
if opts.Strategy == symbol Discrete then
matrix apply(numrows C.dd_i,k->apply(numcols C.dd_i,l -> (
entry=C.dd_i_(k,l)*(1+epsilon*(2*random(2)-1)))))
else if opts.Strategy == symbol Continuous then
matrix apply(numrows C.dd_i,k->apply(numcols C.dd_i,l -> (
entry=C.dd_i_(k,l)*(1+epsilon*(2*random(RR)-1)))))
-- C.dd_i +e*epsilon*(2*random(RR^c,RR^d)-oneMatrix(c,d))
))
disturb(ChainComplex,RR) := ChainComplex => opts -> (C,epsilon) -> (
if ring C =!= ZZ and ring C =!= QQ and not instance(ring C, RealField) then
error "expected a chain complex over ZZ, QQ, or RR";
chainComplex for i from 1 to length C list (
c := rank C_(i-1);
d := rank C_i;
elems := entries C.dd_i;
if opts.Strategy == symbol Discrete then
matrix applyTable(elems, a -> a * (1+epsilon*(2*random(2)-1)))
else if opts.Strategy == symbol Continuous then
matrix applyTable(elems, a -> a * (1+epsilon*(2*random(RR)-1)))
))
testTimeForLLLonSyzygies=method(Options=>{Height=>11})
testTimeForLLLonSyzygies(ZZ,ZZ):= opts->(r,n)->(
mean:=floor (opts.Height/2);
A:=random(ZZ^r,ZZ^n,Height=>opts.Height)-mean*oneMatrix(r,n);
t1:=timing (B:=syz A**QQ);
B=lift(B,ZZ);
t2:=timing(C:=LLL B);
(append(maximalEntry chainComplex(A,B),maximalEntry C),t1#0,t2#0)
)
TEST///
(m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
1/10*sum apply(10,c->(testTimeForLLLonSyzygies(10,20))_1)
1/10*sum apply(10,c->(testTimeForLLLonSyzygies(10,20))_2)
///
randomChainComplex=method(Options=>{Height=>10,WithLLL=>true,ZeroMean=>true})
oneMatrix=method()
oneMatrix(ZZ,ZZ):= (n,m) -> matrix apply(n,i->apply(m,j-> 1))
randomChainComplex(List,List):= opts -> (h,r)-> (
-- lists h_0,..,h_n,r_1,...,r_n
-- of possible possible homology dimensions and ranks of maps in a chain complex
if #h =!= #r+1 then error "expected list of non-negative integers of length n+1 and n";
rr:=append(prepend(0,r),0);
c:=for i from 0 to #h-1 list h_i+rr_i+rr_(i+1);
A:= id_(ZZ^(c_0));
mean:=floor(opts.Height/2);
B:= random(ZZ^(c_0),ZZ^(rr_1),Height=>opts.Height);
if opts.ZeroMean then B=B-mean*oneMatrix(c_0,rr_1);
C:= random(ZZ^(rr_1),ZZ^(c_1),Height=>opts.Height);
if opts.ZeroMean then C=C-mean*oneMatrix(rr_1,c_1);
L:={B*C};
for i from 2 to #c-1 do (
A=syz C;
if opts.WithLLL then A=LLL A;
B= random(source A, ZZ^(rr_i),Height=>opts.Height);
if opts.ZeroMean then B=B-mean*oneMatrix(rank source A,rr_i);
C= random( ZZ^(rr_i),ZZ^(c_i),Height=>opts.Height);
if opts.ZeroMean then C=C-mean*oneMatrix(rr_i,c_i);
L=append(L,A*B*C);
);
return chainComplex L)
TEST ///
needsPackage("SVDComplexes")
h={1,4,6,5,1}
r={1,3,3,4}
C=randomChainComplex(h,r)
prune HH C
CR=C**RR_53
C=CR
SVDHomology CR
(h,U)=SVDComplex CR
auts=apply(min CR..max CR, i-> U_i*transpose U_i)
e=1e-10
apply(auts,M->clean_e M)
apply(auts,M->(betti M==betti id_(source M)))
apply(auts,M->clean_e ( M-id_(source M)))
Cplus=pseudoInverse C
Cplus.dd^2
betti C, betti Cplus
maxC= max C; minC= min C;range=toList(minC+1..maxC)
proj1=append(apply(range,i->(C.dd_i*Cplus.dd_(-i+1))),map(C_maxC,C_maxC,0))
proj2=prepend(map(C_minC,C_minC,0),apply(range,i->Cplus.dd_(-i+1)*C.dd_(i)))
proj3=apply(#proj1,i->proj1_i+proj2_i)
apply(proj1,p->clean_e(p^2-p))
apply(proj2,p->clean_e(p^2-p))
apply(proj3,p->clean_e(p^2-p))
apply(#proj3,i->clean_e(proj1_i*proj2_i))
apply(#proj3,i->clean_e(proj2_i*proj1_i))
///
randomSimplicialComplex=method()
randomSimplicialComplex(ZZ,ZZ):= (k,n) -> (
--k=6,n=15
x:= symbol x;
S:=QQ[x_0..x_k];
sets:=subsets(toList(0..k));
N:=#sets-k-2;
I:=monomialIdeal apply(apply(n,i->sets_(random(N)+k+2)),s->product(s,i->x_i));
c:=simplicialComplex I;
CQ:=chainComplex complex c;
C:=(chainComplex apply(length CQ-1,i->lift(CQ.dd_(i+1),ZZ)))
)
TEST ///
A=randomSimplicialComplex(7,25)
apply(length A+1,i->rank HH_i A)
prune HH A
Cs=apply(10,i->(
while(
while( A=randomSimplicialComplex(8,40);length A <1) do();
max select(length A+1,i->rank HH_i A !=0)< length A) do();
A))
netList apply(Cs,A->(A, apply(length A+1,i-> rank HH_i A)) )
///
normalize = method()
normalize ChainComplex := C-> (
minC := min C;
maxC := max C;
D := if ring C === ZZ then C**QQ else C;
C' := for i from minC+1 to maxC list (
-- for some reason, if D.dd_i is 0, then this returns the 0 matrix:
m := max(flatten entries D.dd_i/abs);
(1/m) * D.dd_i
);
-- this next line is not correct: it might negate some differentials.
-- if the complex has minC odd...
chainComplex C'[-minC]
)
beginDocumentation()
doc ///
Key
RandomComplexes
Headline
support for creating random complexes over the integers
Description
Text
We implement two methods to create a random @TO "ChainComplex"@ over the integers.
The first method (@TO randomChainComplex@) builds the complex from products of randomly chosen matrices of desired rank.
The limitation of this method to produce large complexes over the integers with
moderate Height is the use of the LLL algorithm to improve the presentation of
syzygy matrices.
The second method (@TO "randomSimplicialComplex"@) uses Stanley-Reisner rings from randomly chosen monomial ideals.
Caveat
Some functionality here should be moved elsewhere, e.g.
@TO "disturb"@, @TO "histogram"@, @TO "maximalEntry"@, and @TO "normalize"@.
///
doc ///
Key
randomChainComplex
(randomChainComplex,List,List)
[randomChainComplex, Height]
[randomChainComplex, WithLLL]
[randomChainComplex, ZeroMean]
Headline
random chain complex over the integers with prescribed ranks of the homology group and ranks of the matrices
Usage
C = randomChainComplex(h,r)
Inputs
h:List
of desired ranks of the homology groups, of some length $n$
r:List
of desired ranks of the matrices in the complex, of length $n-1$
Height => ZZ
the sizes of the random integers used
WithLLL => Boolean
use the LLL algorithm to keep the sizes of the integers small
ZeroMean => Boolean
whether to balance the random numbers around zero
Outputs
C:ChainComplex
a random chain complex over the integers whose homology ranks match $h$, and
whose matrices have ranks given by $r$
Description
Text
Example
h={1,4,6,5,1}
r={1,3,3,4}
C=randomChainComplex(h,r)
prune HH C
for i from 0 to 4 list rank HH_i C
for i from 1 to 4 list rank(C.dd_i)
Text
The optional argument {\tt Height} chooses the maximum sizes of the random numbers used.
The actual numbers are somewhat larger (twice as many bits), as matrices are multiplied together.
Example
h={1,4,0,5,1}
r={2,3,3,4}
C=randomChainComplex(h,r, Height=>1000)
C.dd
C.dd^2 == 0
prune HH C
for i from 0 to 4 list rank HH_i C
for i from 1 to 4 list rank(C.dd_i)
Caveat
This returns a chain complex over the integers. Notice that if one gives h to be a list of zeros, then
that doesn't mean that the complex is exact, just that the ranks are as expected.
SeeAlso
"SVDComplexes::SVDComplexes"
///
doc ///
Key
randomSimplicialComplex
(randomSimplicialComplex,ZZ,ZZ)
Headline
the chainComplex over ZZ of a random Stanley-Reisner simplicial complex
Usage
C = randomSimplicialComplex(k,n)
Inputs
k:ZZ
n:ZZ
Outputs
C:ChainComplex
the chainComplex of the Stanley-Reisner simplicial complex of a random
square free monomial ideal in k+1 variables and n generators
Description
Text
We compute the simplicial complex associated to a square free monomial ideal in k+1 variables
whose n generators we choose randomly among the square free monomials.
Example
setRandomSeed "nice example 2";
C = randomSimplicialComplex(7,20)
prune HH C
SeeAlso
"SVDComplexes::SVDComplexes"
///
doc ///
Key
normalize
(normalize,ChainComplex)
Headline
normalize a ChainComplex over QQ or RR
Usage
B = normalize C
Inputs
C:ChainComplex
over RR or QQ
Outputs
B:ChainComplex
an isomorphic ChainComplex over QQ or RR
Description
Text
We divide each matrix by its entry of maximal absolute value, to obtain a complex with entries of absolute size $\le 1$.
Example
setRandomSeed "nice example 2";
C=randomChainComplex({1,1,1},{2,2})
C.dd
B=normalize C
B.dd
///
doc ///
Key
maximalEntry
(maximalEntry,ChainComplex)
(maximalEntry,Matrix)
Headline
maximal absolute value of the entries of the matrix or matrices
Usage
m = maximalEntries C
Inputs
C:ChainComplex
or a @TO "Matrix"@, over ZZ, QQ, or RR
Outputs
m:List
of the maximal absolute values of the entries in matrices defining the differential
Description
Text
For each matrix we compute the of maximal absolute value of the entries
Example
setRandomSeed "nice example 2";
C=randomChainComplex({1,1,1},{2,2},Height=>10)
C.dd
maximalEntry C
B=randomChainComplex({2,2,4,2,5,2,2},{2,3,3,2,3,3},Height=>5)
maximalEntry B
apply(min B..max B,i->rank HH_i(B**QQ))
///
doc ///
Key
disturb
(disturb,ChainComplex,RR)
[disturb, Strategy]
Headline
disturb the matrices of a chain complex over RR
Usage
B = disturb(C,epsilon)
Inputs
C:ChainComplex
over RR or QQ
epsilon:RR
Strategy => Symbol
either Discrete or Continuous, whether the disturbed values should be drawn from a
discrete distribution or a continuous distribution
Outputs
B:ChainComplex
a sequence of matrices over RR
Description
Text
We disturb the entries of the matrices by a relative error of size epsilon depending on either a discrete with values in \{-1,1\}\ or a continuous random variable
with values in [-1..1].
Example
needsPackage "RandomComplexes"
setRandomSeed "nice example 2";
C=randomChainComplex({1,1,1},{2,2})
C.dd
B=disturb(C,1e-4)
B.dd
B.dd^2
B1=disturb(C,1e-4,Strategy => Continuous)
B1.dd^2
Caveat
The result is only approximately a complex
SeeAlso
Continuous
Discrete
///
doc ///
Key
histogram
(histogram,List,ZZ)
Headline
histogram of a list of real numbers
Usage
h = histogram(L,n)
Inputs
L:List
of numbers in RR or QQ or ZZ
n:ZZ
the number of subintervals to be considered.
Outputs
h:List
of n integers, the number of entries in L in i-th equidistant
subdivision of the interval from min L to max L
Description
Text
We compute h_i the number to elements in the i-th equidistant subdivision
of the interval [min L, max L] into n parts
Example
M=(randomChainComplex({20,20},{20},ZeroMean=>true)).dd_1;
(svds,U,Vt)=SVD(M**RR_53);
(entries matrix {svds})_0/log
maximalEntry M
histogram(svds/log,10)
histogram(svds_{0..19}/log,10)
histogram(svds_{20..39}/log,10)
///
doc ///
Key
testTimeForLLLonSyzygies
(testTimeForLLLonSyzygies,ZZ,ZZ)
[testTimeForLLLonSyzygies, Height]
Headline
test timing for LLL on syzygies
Usage
(m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>100)
Inputs
r:ZZ
n:ZZ
Height => ZZ
the sizes of the random integers used
Outputs
m:List
of maximal absolute values of the entries of A, B and the LLL basis of B
t1:RR
the time in seconds to compute B = ker A
t2:RR
the time to compute the LLL basis of B
Description
Text
We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height,
and take the time to compute B=ker A and an LLL basis of B.
Example
setRandomSeed "nice example 2";
r=10,n=20
(m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)
(m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)
L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})
1/10*sum(L,t->t_0)
1/10*sum(L,t->t_1)
///
doc ///
Key
ZeroMean
Headline
Option for randomComplex
Description
Text
If ZeroMean=>true then the integer of given Height values are randomly chosen with a zero mean
///
doc ///
Key
WithLLL
Headline
Option for randomComplex
Description
Text
If WithLLL=>true then syzygy matrices of the randomly chosen matrices
are improved for their Height by applying the LLL algorithm.
///
doc ///
Key
Discrete
Continuous
Headline
Value for the Strategy in disturb
Description
Text
If Strategy=>Continuous then we disturb the complex by floating point numbers
otherwise by discrete values.
SeeAlso
disturb
///
TEST ///
-*
restart
needsPackage "RandomComplexes"
*-
rks = {4,5,6}
C = randomChainComplex({2,2,2,2},rks)
assert(C.dd^2 == 0)
for i from 0 to 3 do assert(rank prune HH_i C == 2)
assert(rks == for i from 1 to 3 list rank C.dd_i)
///
TEST ///
-*
restart
needsPackage "RandomComplexes"
*-
rks = {2,2,2}
C = randomChainComplex({1,1,1,1},rks)
assert(C.dd^2 == 0)
for i from 0 to 3 do assert(rank prune HH_i C == 1)
assert(rks == for i from 1 to 3 list rank C.dd_i)
///
TEST ///
-*
restart
needsPackage "RandomComplexes"
*-
hr = {5,5,5,5}
rks = {2,2,2}
C = randomChainComplex(hr,rks)
assert(C.dd^2 == 0)
hr == for i from 0 to #hr-1 list rank prune HH_i C
assert(rks == for i from 1 to #rks list rank C.dd_i)
///
TEST ///
-*
restart
needsPackage "RandomComplexes"
*-
hr = {5,5,5,5}
rks = {20,20,20}
C = randomChainComplex(hr,rks)
assert(C.dd^2 == 0)
-- hr == for i from 0 to #hr-1 list rank prune HH_i C -- ouch, this needs improvement!!
assert(rks == for i from 1 to #rks list rank C.dd_i)
///
TEST ///
-- XXX
-*
restart
needsPackage "RandomComplexes"
*-
setRandomSeed "nice example 2";
C = randomChainComplex({1,1,1},{2,2})
C.dd
B=normalize C
B.dd
CR = C ** RR
BR = normalize CR
BR.dd
D = chainComplex{map(RR^1, RR^3, 0), map(RR^3, RR^1, {{1.0},{3.0},{5.0}})}
D.dd^2
normalize D
D.dd
///
TEST ///
-- test of disturb
-*
restart
needsPackage "RandomComplexes"
*-
setRandomSeed "nice example";
C = randomChainComplex({1,1,1},{2,2})
C.dd
disturb(C,.000001)
///
end--
restart
uninstallPackage "RandomComplexes"
restart
installPackage "RandomComplexes"
check("RandomComplexes", UserMode=>true)
viewHelp "RandomComplexes"
TEST ///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
h={1,3,5,2,1}
r={5,11,3,2}
setRandomSeed "alpha"
elapsedTime C=randomChainComplex(h,r,Height=>5,WithLLL=> true)
C.dd_4
C.dd^2
p=nextPrime 1000
CF=C**ZZ/p
length C
elapsedTime apply(length C +1,i-> rank HH_i CF)
--prune HH C
CR=normalize(C**RR_53)
--CR=C**RR_53
elapsedTime SVDHomology CR
elapsedTime SVDHomology(CR,Strategy=>Laplacian)
elapsedTime (h,U)=SVDComplex CR;
elapsedTime (hL,V)=SVDComplex(CR,Strategy=>Laplacian);
e=1e-9
clean_e (transpose U#0*C.dd_1* U#1)
clean_e (transpose V#0*C.dd_1*V#1)
///
TEST ///
setRandomSeed 7
C= randomSimplicialComplex(6,20)
prune HH C
F=ZZ/nextPrime 1000
CF=C**F
elapsedTime apply(length C+1,i-> rank HH_i CF)
rF=apply(length C,i-> rank CF.dd_(i+1))
CR=C**RR_53
elapsedTime SVDHomology CR
elapsedTime (h,U)=SVDComplex CR;
Sigma = source U
betti Sigma === betti C
rR=elapsedTime apply(length Sigma ,i-> rank Sigma.dd_(i+1))
assert(rR==rF)
Sigma.dd_1
e=1e-10
apply(length C, i->clean_e (U_i*Sigma.dd_(i+1)*transpose U_(i+1)-C.dd_(i+1)))
e=1e-20
apply(length C, i->clean_e (U_i*Sigma.dd_(i+1)*transpose U_(i+1)-C.dd_(i+1)))
setRandomSeed 3
elapsedTime Cs= apply(10,i->(
while (
while ( C= randomSimplicialComplex(6,15); length C <1) do ();
max select(length C+1, i-> rank HH_i C != 0) < length C) do ();
C)
)
netList apply(Cs, C-> (C, apply(length C+1,i->rank HH_i C)))
Cs=reverse Cs_(sort apply (#Cs,j->(Z=Cs_j;{sum(length Z+1,i->rank Z_i),j}))/last)
tally apply(Cs,C-> apply(length C+1,i->rank HH_i C))
netList apply(Cs, C-> (C, apply(length C+1,i->rank HH_i C)))
C=Cs_1**Cs_3
F=ZZ/nextPrime 1000
CF=C**F
hF=elapsedTime apply(length C+1,i-> rank HH_i CF)
CR=C**RR_53
A=elapsedTime SVDHomology CR
hR=apply(keys A_0,k->A_0#k)
assert(hR == hF)
elapsedTime (h,U)=SVDComplex CR;
Sigma = source U
e=1e-10
nearlyZero=elapsedTime chainComplex apply(length C,i->(U_i*Sigma.dd_(i+1)*transpose U_(i+1)-C.dd_(i+1)))
-- needs speed up for multiplication
maximalEntry nearlyZero
///
TEST ///
restart
needsPackage("RandomComplexes")
needsPackage("SVDComplexes")
setRandomSeed 7
elapsedTime Cs= apply(10,i->(
while (
while ( C= randomSimplicialComplex(5,10); length C <1) do ();
max select(length C+1, i-> rank HH_i C != 0) < length C) do ();
C)
)
netList apply(Cs, C-> (C, apply(length C+1,i->rank HH_i C)))
Cs=Cs_(sort apply (#Cs,j->(Z=Cs_j;{sum(length Z+1,i->rank Z_i),j}))/last)
tally apply(Cs,C-> apply(length C+1,i->rank HH_i C))
netList apply(Cs, C-> (C, apply(length C+1,i->rank HH_i C)))
C=Cs_0**Cs_0**Cs_1
CR=C**RR_53
A=elapsedTime SVDHomology CR -- 1.75474 seconds elapsed
A_0
hF = new MutableHashTable
F=ZZ/nextPrime 1000
CF=C**F
time for i from 0 to length C do hF#i = rank HH_i CF
B=new HashTable from hF
assert(A_0 === B)
///
TEST ///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
setRandomSeed"test SVD"
h={1,4,10,4,1}
r={10,20,20,10}
elapsedTime C=randomChainComplex(h,r,Height=>3,WithLLL=>true,ZeroMean=>true)
maximalEntry C
CR=C**RR_53
elapsedTime SVDHomology CR
elapsedTime SVDHomology(CR,Strategy=>Laplacian)
C1=randomChainComplex({1,1},{5})**RR_53
CR1=CR**C1
A=elapsedTime SVDHomology CR1
h={1,5,14,14,5,1}
r={10,10,10,10,10}
C=randomChainComplex(h,r,Height=>1000,WithLLL=>true,ZeroMean=>true)
CR=C**RR_53
maximalEntry CR
B=elapsedTime SVDHomology CR
elapsedTime SVDHomology(CR,Strategy=>Laplacian)
assert(A_0===B_0)
///
TEST ///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
setRandomSeed"test SVD"
h={1,5,20,5,1}
r={10,20,20,10}
elapsedTime C=randomChainComplex(h,r,Height=>3,WithLLL=>true,ZeroMean=>true)
maximalEntry C
CR=C**RR_53
elapsedTime SVDHomology(CR,Strategy=>Laplacian)
D=disturb(CR,1e-5)
elapsedTime SVDHomology D
elapsedTime SVDHomology CR
elapsedTime SVDHomology(D,CR)
elapsedTime SVDHomology(D,Strategy=>Laplacian)
///
TEST ///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
hts=new MutableHashTable
for r from 4 to 18 do (
n=r+1; a=testTimeForLLLonSyzygies(r,n);
while (n=n+1,b=testTimeForLLLonSyzygies(r,n); b_1+b_2 <0.1) do (a=b);
hts#(r,n-1)=a;
hts#(r,n)=b;
)
Hts=new HashTable from hts
t=apply(100,c->(b=testTimeForLLLonSyzygies(10,43);b_1+b_2))
e=1e3
tally apply(t,c->floor(c*e)*1/e)
min t, max t
///
TEST ///
restart
needsPackage "RandomComplexes"
M=(randomChainComplex({50,50},{50},ZeroMean=>true)).dd_1;
(svds,U,Vt)=SVD(M**RR_53);
maximalEntry M
histogram(svds/log,10)
D=diagonalMatrix apply(100,i->2^i);
histogram(first SVD(D*M**RR_53)/log,10)
numericRank(M*D**RR_53)
histogram(first SVD(M*D**RR_53)/log,10)
D=diagonalMatrix apply(100,i->(i+1)^10);
histogram(first SVD(M*D**RR_53)/log,10)
numericRank(M*D**RR_53)
///
TEST ///
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- for paper??
-- %%%%%%%%%%%%%%%%%%%%%%%
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
h={1,1,1,1}
r={2,2,2}
setRandomSeed 2
C=randomChainComplex(h,r,Height=>9,WithLLL=>true,ZeroMean=>true)
prune HH C
C.dd_1,C.dd_2,C.dd_3
ker transpose C.dd_1,LLL syz C.dd_2,LLL syz transpose C.dd_2,ker C.dd_3
--C1=randomChainComplex({1,1},{5},Height=>5,WithLLL=>true,ZeroMean=>true)
CR=C**RR_53
tally sort apply(10,c->random(RR_53)) --CR=C**C1**RR_53
elapsedTime SVDHomology(CR,Threshold=>1e-15)
elapsedTime SVDHomology(CR,Strategy=>Laplacian,Threshold=>1e-13)
28.7143^2,47.1932^2,35.208^2
U=last SVDComplex CR
V=last SVDComplex (CR,Strategy=>Laplacian)
(source U).dd_1, (source V).dd_1
(source U).dd_2, (source V).dd_2
(source U).dd_3, (source V).dd_3
CRd=dual CR[-3]
Ud=last SVDComplex CRd;
(source U).dd_1, (source Ud).dd_3
(source U).dd_2, (source Ud).dd_2
(source U).dd_3, (source Ud).dd_1
U#0-V#0
U#1-V#1,U#1_4
U#2-V#2,U#2_0
U#3-V#3
setRandomSeed 1
D=disturb(CR,1e-3)
D.dd_1,D.dd_2,D.dd_3
D.dd^2
D'=disturb(CR,1e-3)
CR.dd_1
(h,Ud) = SVDComplex(D',D,Threshold=>1e-2);
h
elapsedTime SVDHomology(D,Threshold=>1e-2)
elapsedTime SVDHomology(D,Strategy=>Laplacian,Threshold=>1e-2)
elapsedTime SVDHomology(D,CR,Threshold=>1e-2)
elapsedTime SVDHomology CR
Vd=last SVDComplex(D,CR,Threshold=>1e-2);
Ud=last SVDComplex (D,Strategy=>Laplacian,Threshold=>1e-2);
(source Ud).dd_1, (source Vd).dd_1, (source V).dd_1
(source Ud).dd_2, (source Vd).dd_2, (source V).dd_2
(source Ud).dd_3,(source Vd).dd_3, (source V).dd_3
2.0^(-53)
apply(3,i->maximalEntry(U#i*transpose U#i-id_(source U#i)))
U#0 *(source U).dd_1 *transpose U#1 - CR.dd_1
D.dd_1-CR.dd_1
Ud#0 *(source Ud).dd_1 *transpose Ud#1 - CR.dd_1
Ud#0 *(source Ud).dd_1 *transpose Ud#1 - D.dd_1
Ud#1 *(source Ud).dd_2 *transpose Ud#2 - D.dd_2
Ud#2 *(source Ud).dd_3 *transpose Ud#3 - D.dd_3
F=chainComplex apply(3,i->U#i *(source U).dd_(i+1) *transpose U#(i+1))
E=chainComplex apply(3,i->Ud#i *(source Ud).dd_(i+1) *transpose Ud#(i+1))
D.dd^2
E.dd^2
(h,Ue)=SVDComplex(E,Strategy=>Laplacian,Threshold=>1e-8);
h
SVDHomology(E,Strategy=>Laplacian)
euclideanDistance(E,D)
euclideanDistance(CR,D)
euclideanDistance(CR,F)
Ue#0 *(source Ue).dd_1 *transpose Ue#1 - E.dd_1
Ue#1 *(source Ue).dd_2 *transpose Ue#2 - E.dd_2
Ue#2 *(source Ue).dd_3 *transpose Ue#3 - E.dd_3
sum(flatten entries (E.dd_1-D.dd_1)/abs)
sum(flatten entries (CR.dd_1-D.dd_1)/abs)
,D.dd_1-E.dd_1
,E.dd_2,E.dd_3
first SVD CR.dd_1, first SVD D.dd_1
first SVD CR.dd_2, first SVD D.dd_2
first SVD CR.dd_3, first SVD D.dd_3
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
h={1,1,1,1}
r={2,2,2}
setRandomSeed 2
C=randomChainComplex(h,r,Height=>9,WithLLL=>true,ZeroMean=>true)
prune HH C
C.dd_1,C.dd_2,C.dd_3
CR=C**RR
Cplus=(pseudoInverse CR)
Cplus.dd^2
CplusL=pseudoInverse(CR,Strategy=>Laplacian)
CplusQ=pseudoInverse(C**QQ)
CplusQ.dd_-2**RR_53-Cplus.dd_(-2)
CplusQ.dd_-2*CplusQ.dd_-1
CplusQ.dd_-0
Cplus.dd_-0
printingPrecision =6
Cplus.dd_0
tex Cplus.dd_0
tex CplusQ.dd_0
B=chainComplex CplusQ
B.dd^2
C.dd^2
B[3]
apply(3,i->Cplus.dd_(i+1)-CplusL.dd_(i+1))
CplusL.dd^2
Uplus=last SVDComplex Cplus
apply(3,i->(source Uplus).dd_(i+1))
Cplusplus =pseudoInverse Cplus
Cplusplus.dd_1,Cplusplus.dd_2,Cplusplus.dd_3
Cplus.dd_1,Cplus.dd_2,Cplus.dd_3
p1=C.dd_1* Cplus.dd_3
p1^2-p1
p2=C.dd_2*Cplus.dd_2
p3=C.dd_3*Cplus.dd_1
p2^2-p2,
p3^2-p3
q1=Cplus.dd_3*C.dd_1
q1^2-q1
q2=Cplus.dd_2*C.dd_2
q2^2-q2
q3=Cplus.dd_1*C.dd_3
q3^2-q3
betti p1, betti p2, betti p3
betti q1, betti q2, betti q3
q1*p2-p2*q1
q2*p3-p3*q2
h1=id_(RR^5)-p2-q1
h1^2-h1
first SVD h1
C.dd_3
Cplus.dd^2
apply(3,i->Cplus.dd_(i+1))
(source Ue).dd^2
E.dd^2
F.dd^2
D.dd^2
CR.dd^2
maximalEntry CR, maximalEntry D
U#0 *(source U).dd_1 *transpose U#1 - CR.dd_1
U#1 *(source U).dd_2 *transpose U#2 - CR.dd_2
U#2 *(source U).dd_3 *transpose U#3 - CR.dd_3
--viewHelp
tex C.dd_1
tex C.dd_2
tex C.dd_3
printingPrecision = 5
tex (source U).dd_1
tex (source U).dd_2
tex (source U).dd_3
printingAccuracy = 4
tex U#0
tex U#1
tex U#2
tex U#3
///
/// -- for David
restart
needsPackage "AGRExamples"
needsPackage "InverseSystems"
--viewHelp InverseSystems
R=QQ[a..h]
Rp=(ZZ/32003)(monoid R)
deg=4
nextra=10
setRandomSeed "1"
F=sum(gens R,x->x^deg)+sum(nextra,i->(random(1,R))^deg);
I = ideal fromDual2 matrix {{F}} ;
Ip=sub(I,Rp);
Cp=res(Ip, FastNonminimal=>true)
betti Cp
betti(Cp,Minimize=>true)
J=ideal fromDual matrix{{F}};
betti J
Jp=sub(J,Rp);
CJp=res(Jp, FastNonminimal=>true)
betti CJp
betti(CJp,Minimize=>true)
pts=ideal (gens Ip)_{0..17};
Cpts=res(pts,FastNonminimal=>true)
betti(Cpts,Minimize=>true)
hilbertPolynomial pts
apply(5,i->hilbertFunction(i,Rp/Ip))
A=Rp/(Ip+ideal random(1,Rp))
apply(5,i->hilbertFunction(i,A))
///
-- the following example refers to example files that don't exist,
-- and removed undocumented features of res.
///
restart
needsPackage "SVDComplexes"
needsPackage "AGRExamples"
needsPackage "RandomComplexes"
needsPackage "InverseSystems"
R=QQ[a..h]
Rp=(ZZ/32003)(monoid R)
R0=(RR_53)(monoid R)
deg=4
nextra=10
setRandomSeed "1"
F=sum(gens R,x->x^deg)+sum(nextra,i->(random(1,R))^deg);
I = ideal fromDual2 matrix {{F}} ;
betti I
elapsedTime C=res(I,Strategy=>4.1);
betti C
elapsedTime minimalBetti sub(I,Rp)
elapsedTime SVDBetti C
Ls=constantStrands(C,RR_53)
D=Ls#9
SVDHomology(D)
SVDHomology(D,Strategy=>Laplacian)
SVDHomology(D,Strategy=>Laplacian,Threshold=>1e-2)
Ls1=constantStrands(C,RR_1000)
D1=Ls1#9
D1=D1**RR_53
SVDHomology(D1,Strategy=>Laplacian)
SVDHomology(D1,D)
SVDHomology D1
(h,U)=SVDComplex(D,D1);
(h,U)=SVDComplex(D1,D);
reverse sort unique flatten entries (source U).dd_6
reverse sort unique flatten entries (source U).dd_7
maximalEntry D1
///
TEST///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
setRandomSeed "alpha"
time Cs=apply(toList(1..6),i->(
h={1+i,3*i,2*i,i};
r={5,10+3*i,11+2*i};
elapsedTime C=randomChainComplex(h,r,Height=>19,WithLLL=>true);
CR=normalize(C**RR_53)));
netList Cs
printingPrecision=3
data=apply(Cs,CR->(
t1=(elapsedTiming SVDHomology CR)#0;
t2=(elapsedTiming SVDComplex CR)#0;
t3=(elapsedTiming SVDComplex(CR,Strategy=>Laplacian))#0;
h=(SVDHomology CR)#0;
h1=(SVDComplex(CR,Strategy=>Laplacian))#0;
assert(h===h1);
c=apply(4,i->rank CR_i);
{c, apply(4,i->h#i),t2,t3}
));
netList data
-*
${{{7, 21, 28, 14}, {2, 3, 2, 1}, .00211, .011}, {{8, 27, 35, 17}, {3, 6,
4, 2}, .00225, .0182}, {{9, 33, 42, 20}, {4, 9, 6, 3}, .00254, .0294},
{{10, 39, 49, 23}, {5, 12, 8, 4}, .00291, .0647}, {{11, 45, 56, 26}, {6,
15, 10, 5}, .00355, .109}, {{12, 51, 63, 29}, {7, 18, 12, 6}, .00442,
.115}}$
*-
///
TEST///
restart
needsPackage "RandomComplexes"
needsPackage "SVDComplexes"
setRandomSeed "alpha"
time Cs=apply(toList(1..6),i->(
k=10+random(4);N=20+random 20;
elapsedTime C=randomSimplicialComplex(k,N);
CR=C**RR_53;
{k,N,CR}));
netList Cs
printingPrecision=3
data=apply(Cs,kNCR->(k=kNCR_0;
N=kNCR_1;
CR=kNCR_2;
t1=(elapsedTiming SVDHomology CR);
h=t1#1#0;
c=apply(length CR,i->rank CR_i);
{k+1,N,c, apply(length CR,i->h#i),t1#0}
));
netList data
tex data
-*
o9 = ${{13, 25, {13, 78, 284, 695, 1193, 1443, 1179, 570, 117}, {1, 0, 0, 0, 0,
0, 0, 6, 0}, 31.5}, {11, 29, {11, 53, 147, 255, 276, 169, 47}, {1, 0, 0,
0, 0, 2, 0}, .0647}, {12, 24, {12, 65, 210, 450, 668, 685, 453, 156}, {1,
0, 0, 0, 0, 0, 2, 0}, 1.37}, {11, 25, {11, 54, 154, 276, 312, 210, 73},
{1, 0, 0, 0, 0, 0, 0}, .0869}, {12, 32, {12, 66, 218, 475, 701, 680, 382,
89}, {1, 0, 0, 0, 0, 0, 6, 0}, 1.46}, {14, 26, {14, 91, 364, 999, 1982,
2909, 3156, 2447, 1234, 327}, {1, 0, 0, 0, 0, 0, 0, 0, 3, 0}, 504}}$
*-
///
viewHelp "RandomComplexes"
|