1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
|
-- -*- coding: utf-8 -*-
newPackage(
"SpechtModule",
Version => "1.0",
Date => "October 22, 2019",
Authors => {{Name => "Jonathan Niño",
Email => "ja.nino937@uniandes.edu.co",
HomePage => "http://www.uniandes.edu.co"}},
Keywords => {"Representation Theory"},
Headline => "invariants for permutation groups",
DebuggingMode => false
)
export {"CharacterTable"}
export {"characterTable"}
export {"YoungTableau"}
export {"youngTableau"}
export {"tableauToList"}
export {"listToTableau"}
export {"TableauList"}
export {"tableauList"}
export {"toListOfTableaux"}
export {"addTableau"}
export {"tabloids"}
export {"standardTableaux"}
export {"semistandardTableaux"}
export {"rowPermutationTableaux"}
export {"indexTableau"}
export {"hookLengthFormula"}
export {"cycleDecomposition"}
export {"conjugacyClass"}
export {"matrixRepresentation"}
export {"readingWord"}
export {"columnStabilizer"}
export {"rowStabilizer"}
export {"garnirElement"}
export {"sortColumnsTableau"}
export {"cardinalityOfConjugacyClass"}
export{"multinomial"}
export {"straighteningAlgorithm"}
export {"SpechtModuleElement"}
export {"spechtModuleElement"}
export {"permutePolynomial"}
export {"vandermondeDeterminant"}
export {"spechtPolynomial"}
export {"indexMonomial"}
export {"higherSpechtPolynomial"}
export {"spechtPolynomials"}
export {"higherSpechtPolynomials"}
export {"permutationSign"}
export {"firstRowDescent"}
export {"schurPolynomial"}
export {"generalizedVandermondeMatrix"}
export {"Robust","AsExpression"}
export {"generatePermutationGroup"}
export {"representationMultiplicity"}
export {"innerProduct"}
export {"elementarySymmetricPolynomials"}
export {"powerSumSymmetricPolynomials"}
export {"secondaryInvariants"}
export {"permutationMatrix"}
protect \ {row,column}
CharacterTable = new Type of MutableHashTable
characterTable = method(TypicalValue => CharacterTable)
characterTable ZZ := n -> (
charTables := new MutableHashTable;
for i from 1 to n do (
charTable := new CharacterTable;
partis := partitions i;
charTable#index = hashTable apply(#partis, i-> partis#i => i);
charTable#length = #(partis);
charTable#degree = i;
charTable#values = mutableMatrix(ZZ,charTable#length,charTable#length);
charTables#i = charTable;
y:= partitions(i);
for j to #y-1 do (
for k from j to #y-1 do (
val:= calculateNumberOfEquals(y#(j),y#(k),charTables);
(charTables#i)_(j,k)=val;
);
);
);
charTable := reduceCharacterTable(charTables#n);
charTable
)
CharacterTable_Sequence:=(charTable,seq)-> (
if #seq != 2 then error "expected a sequence of length 2";
(a,b) := seq;
if(class a === Partition) then (
if sum toList a != charTable#degree then (error "expected a partition of size "|charTable#degree)
else a=charTable#index#a)
else (if class a =!= ZZ then error "expected argument 1 to be a partition or an integer");
if(class b === Partition) then (
if sum toList b != charTable#degree then (error "expected a partition of size "|charTable#degree)
else b=charTable#index#b)
else if class b =!= ZZ then error "expected argument 2 to be a partition or an integer";
charTable#values_(a,b)
)
CharacterTable_Sequence = (charTable,seq,e)-> (
if #seq != 2 then error "expected a sequence of length 2";
(a,b) := seq;
if(class a === Partition) then (
if sum toList a != charTable#degree then (error "expected a partition of size "|charTable#degree)
else a=charTable#index#a)
else (if class a =!= ZZ then error "expected argument 1 to be a partition or an integer");
if(class b === Partition) then (
if sum toList b != charTable#degree then (error "expected a partition of size "|charTable#degree)
else b=charTable#index#b)
else if class b =!= ZZ then error "expected argument 2 to be a partition or an integer";
charTable#values_(a,b)=e;
e
)
innerProduct = method(TypicalValue => ZZ)
innerProduct(ZZ,MutableMatrix,MutableMatrix) := (n,C,X) -> (
prod:=0;
p:=partitions(n);
prod = sum apply( numColumns(C),i -> C_(0,i)*(X_(0,i))*(cardinalityOfConjugacyClass(p#(i))));
prod//(n)!
)
net CharacterTable := charTable -> (
net(charTable#values)
)
reduceCharacterTable = method(TypicalValue => CharacterTable)
reduceCharacterTable CharacterTable := charTable -> (
for i to charTable#length-1 do(
for j to i-1 do(
c := innerProduct(charTable#degree,(charTable#values)^{i},(charTable#values)^{j});
for k to charTable#length-1 do(
val:= charTable_(i,k)-c*charTable_(j,k);
charTable_(i,k)=val;
);
);
);
charTable
)
calculateNumberOfEquals = method(TypicalValue => ZZ )
calculateNumberOfEquals(Partition, Partition,MutableHashTable):= (partition1, partition2,charTables)->(
z:=0;
if(sum(toList partition1) == sum(toList partition2)) then (
if #partition1 == 1 then (z = 1;)
else (
border:= partition2#0;
partition2 = drop(partition2,1);
for i to #partition1-1 when partition1#i>=border do(
c:= new MutableList from partition1;
c#i = c#i-border;
newPartition := new Partition from reverse sort toList c;
if(newPartition#(-1) == 0)
then (newPartition = drop(newPartition,-1););
if(#newPartition == 0)
then (z= z+ 1;)
else(
currentTableNumber:=sum(toList newPartition);
z = z+(charTables#currentTableNumber)_(newPartition,partition2);
);
);
);
) else error "Partition dimensions do not match";
z
)
YoungTableau = new Type of MutableHashTable
youngTableau = method(TypicalValue => YoungTableau)
youngTableau Partition := p -> (
tableau:= new YoungTableau;
tableau#partition = p;
tableau#values = new MutableList from ((sum toList p):0) ;
tableau
)
youngTableau(Partition,List):= (p,L)->(
if(sum toList p != #L) then error " Partition size does not match with the length of the list L";
tableau:= new YoungTableau;
tableau#partition =p;
tableau#values = new MutableList from L;
tableau
)
youngTableau(YoungTableau):= (tableau)->(
t:= new YoungTableau;
for i to #keys(tableau)-1 do t#((keys(tableau))#i) = tableau#((keys(tableau))#i);
t#values = new MutableList from tableau#values;
t
)
youngTableau(Partition,MutableList):= (p,L)->(
if(sum toList p != #L) then error " Partition and List size do not match";
tableau:= new YoungTableau;
tableau#partition =p;
tableau#values = L;
tableau
)
tableauToList = method(TypicalValue => List)
tableauToList(YoungTableau):= (tableau)->(
n:= #(tableau#partition);
d:=0;
s:= apply(n,i->(d=d+tableau#partition#i;d));
s = prepend(0,s);
L := apply(n,i->(toList tableau#values)_{(s#i..(s#(i+1))-1)});
L
)
listToTableau = method(TypicalValue => YoungTableau)
listToTableau List := l -> (
parti := new Partition from apply (l,i->#i);
youngTableau(parti,flatten l)
)
YoungTableau_Sequence:= (tableau,pos) -> (
if #pos != 2 then error "expected a sequence of length two"
else(
(i,j) := pos;
ans:= 0;
if(i < #(tableau#partition)) then (
if(j < tableau#partition#i) then (
ind := sum (toList tableau#partition)_{0..(i-1)};
ans = tableau#values#(ind+j);
)
else (error "Index out of bounds ");
)
else( error "Index out of bounds" );
ans
)
)
YoungTableau_Sequence = (tableau,pos,e)->(
(i,j):=pos;
if(i < #(tableau#partition)) then (
if(j < tableau#partition#i) then (
ind := sum (toList tableau#partition)_{0..(i-1)};
tableau#values#(ind+j)= e;
)
else (error "Index out of bounds ");
)
else( error "Index out of bounds" );
e
)
YoungTableau^ZZ := (tableau,i) -> (
ans:=0;
if i < #(tableau#partition) then (
ind := sum (toList tableau#partition)_{0..(i-1)};
ans = (toList tableau#values)_{(ind..(ind + (tableau#partition#i)-1))};
)
else error "Index out of bounds";
ans
)
YoungTableau_ZZ := (tableau,i) -> (
ans:= 0;
if -1< i and i < tableau#partition#0 then (
ind:= 0;
ans = new MutableList;
for j to #(tableau#partition)-1 when (tableau#partition#j > i) do(
ans#j = tableau#values#(ind+i);
ind = ind+(tableau#partition#j);
);
ans = toList ans;
ans
)
)
YoungTableau == YoungTableau := (S,T) -> (
toList S#partition == toList T#partition and toList S#values == toList T#values
)
entries YoungTableau := tableau -> toList tableau#values
numcols YoungTableau := tableau -> tableau#partition#0
numrows YoungTableau := tableau -> #tableau#partition
size YoungTableau := tableau -> sum toList tableau#partition
net YoungTableau := tableau ->(
l := tableauToList tableau;
corner := #(tableau#partition) ;
tableauNet:= "|" ;
for i to corner-2 do tableauNet = tableauNet || "|";
for i to numcols tableau-1 do (
column:= tableau_i;
columnString := " "|column#0;
for j from 1 to #column-1 do columnString = columnString|| " "|column#j;
for j from #column to corner -1 do columnString = columnString || " |" ;
corner = #column;
tableauNet = tableauNet|columnString;
);
columnString := " |";
for i to corner-2 do columnString= columnString || " |";
tableauNet = tableauNet | columnString;
tableauNet
)
TableauList = new Type of MutableHashTable
tableauList = method(TypicalValue => TableauList)
tableauList Partition := p-> (
lista := new TableauList;
lista#partition = p;
lista#matrix = mutableMatrix(ZZ,multinomial(p),sum(toList p));
lista#length = 0;
lista
)
tableauList (Partition,ZZ) := (p,n)-> (
lista := new TableauList;
lista#partition = p;
lista#matrix = mutableMatrix(ZZ,n,sum(toList p));
lista#length = 0;
lista
)
toListOfTableaux = method()
toListOfTableaux TableauList := tableaux -> (
apply(tableaux#length,i-> youngTableau(tableaux#partition,flatten entries tableaux#matrix^{i}))
)
addTableau = method(TypicalValue => ZZ)
addTableau(TableauList,YoungTableau):= (tableaux,tableau) ->(
scan(0..sum(toList tableau#partition)-1, i-> (tableaux#matrix)_(tableaux#length,i) = tableau#values#i);
tableaux#length = tableaux#length+1;
tableaux
)
addTableau(TableauList,List):= (tableaux,tableau) -> (
scan(0..sum(toList tableaux#partition)-1, i-> (tableaux#matrix)_(tableaux#length,i) = tableau#i);
tableaux#length = tableaux#length+1;
tableaux
)
net TableauList := tableaux -> (
net toListOfTableaux tableaux
)
TableauList_ZZ := (tableaux,n) -> (
youngTableau(tableaux#partition,flatten entries tableaux#matrix^{n})
)
getRow = method()
getRow (TableauList,ZZ) := (tableaux,i)-> flatten entries tableaux#matrix^{i}
previousElementInRow = method(TypicalValue => ZZ)
previousElementInRow(YoungTableau,HashTable):= (tableau,ind)->(
e := -1;
if ind#column!=0 then e = tableau#values#(ind#index-1);
e
)
previousElementInColumn = method(TypicalValue => ZZ)
previousElementInColumn(YoungTableau,HashTable):= (tableau,ind)->(
e:=-1;
p:= tableau#partition;
if ind#row!=0 then e = tableau#values#(ind#index-p#(ind#row-1));
e
)
nextIndex = method()
nextIndex (HashTable,Partition) := (ind,p)->(
if p#(ind#row)-1==(ind#column) then (
ind = hashTable {row => ind#row+1,column => 0, index => ind#index+1 })
else (
ind = hashTable {row => ind#row,column => ind#column+1, index => ind#index+1 }
);
ind
)
maxPossibleNumber = method(TypicalValue => ZZ)
maxPossibleNumber(YoungTableau,HashTable):= (tableau,ind) ->(
s:=(size tableau)-(tableau#partition)#(ind#row);
s= s+ind#column;
s
)
tabloids = method(TypicalValue => TableauList)
tabloids(Partition) := p->(
size:= multinomial p;
tableaux :=tableauList(p,size);
if(size!= 0) then(
nums := toList(0..sum toList p - 1);
tableau:= youngTableau(p);
ind := hashTable {row=> 0, column => 0, index => 0};
recursiveTabloids(nums,tableau,tableaux,ind);
);
tableaux
)
recursiveTabloids = method(TypicalValue => TableauList)
recursiveTabloids(List,YoungTableau , TableauList,HashTable):= (numbers, tableau, tableaux,ind) -> (
maximum:= maxPossibleNumber(tableau,ind);
newInd:= nextIndex (ind,tableau#partition);
for i from 0 to #numbers-1 when (numbers#i < maximum+1) do (
if(numbers#i>previousElementInRow(tableau,ind)) then
(
tableau#values#(ind#index) = numbers#i;
numbers2 := delete(numbers#i,numbers);
if newInd#index == sum toList tableau#partition then addTableau(tableaux,tableau)
else recursiveTabloids(numbers2,tableau,tableaux,newInd);
);
);
tableaux
)
maxPossibleNumberStandard = method(TypicalValue => ZZ)
maxPossibleNumberStandard(YoungTableau,HashTable):= (tableau,ind) ->(
s:=sum(toList tableau#partition);
for i from ind#row to #(tableau#partition)-1 when (tableau#partition#i > ind#column ) do (
s = s - (tableau#partition#i)+ind#column;
);
s
)
standardTableaux = method(TypicalValue => TableauList)
standardTableaux(Partition) := p->(
size:=sum(toList p);
tableaux :=tableauList(p,hookLengthFormula(p));
if size != 0 then(
nums := toList(0..size-1);
tableau:= youngTableau(p);
ind := hashTable {row=> 0, column => 0, index => 0};
recursiveStandardTableaux(nums,tableau,tableaux,ind);
);
tableaux
)
recursiveStandardTableaux = method(TypicalValue => TableauList)
recursiveStandardTableaux(List,YoungTableau,TableauList,HashTable):= (numbers, tableau, tableaux,ind) -> (
maximum:= maxPossibleNumberStandard(tableau,ind);
newInd:= nextIndex (ind,tableau#partition);
for i from 0 to #numbers-1 when (numbers#i < maximum+1) do (
if(numbers#i>previousElementInRow(tableau,ind) and numbers#i>previousElementInColumn(tableau,ind) ) then
(
tableau#values#(ind#index)= numbers#i;
numbers2 := delete(numbers#i,numbers);
if newInd#index == sum toList tableau#partition then addTableau(tableaux,tableau)
else recursiveStandardTableaux(numbers2,tableau,tableaux,newInd);
);
);
tableaux
)
maxPossibleNumbersSemistandard = method(TypicalValue => ZZ)
maxPossibleNumbersSemistandard(YoungTableau,HashTable,ZZ):= (tableau,ind,n)-> (
s:=n;
s = s - #(tableau_(ind#column))+ind#row;
s
)
semistandardTableaux = method(TypicalValue => TableauList)
semistandardTableaux(Partition,ZZ) := (p,n)->(
size:=sum(toList p);
tableaux :=tableauList(p,n^size);
if size!=0 then (
nums := toList(0..size-1);
tableau:= youngTableau(p);
ind := hashTable {row=> 0, column => 0, index => 0};
recursiveSemistandardTableaux(n,tableau,tableaux,ind);
);
tableaux
)
recursiveSemistandardTableaux = method(TypicalValue => TableauList)
recursiveSemistandardTableaux(ZZ,YoungTableau,TableauList,HashTable):= (maxNumber, tableau, tableaux,ind) -> (
newInd:= nextIndex (ind,tableau#partition);
maximum:= maxPossibleNumbersSemistandard(tableau,ind,maxNumber);
for i from max(previousElementInRow(tableau,ind),0 ,previousElementInColumn(tableau,ind)+1) to maximum do(
tableau#values#(ind#index)= i;
if newInd#index == sum toList tableau#partition then tableaux = addTableau(tableaux,tableau)
else recursiveSemistandardTableaux(maxNumber,tableau,tableaux,newInd);
);
tableaux
)
readingWord = method()
readingWord YoungTableau := tableau -> (
flatten apply (numcols tableau, i-> reverse tableau_i)
)
wordToTableau = method()
wordToTableau (Partition,List) := (p,word)->(
conj := conjugate p;
suma := 0;
tableau := youngTableau p;
for i to #conj-1 do(
scan(conj#i, j -> tableau_((conj#i)-1-j,i)=word#(suma+j));
suma = suma+conj#i;
);
tableau
)
indexTableau = method()
indexTableau(YoungTableau):= tableau -> (
word := readingWord tableau;
ind := 0;
m:=0;
index := new MutableList;
while m < sum(toList tableau#partition) do(
for i to #word -1 do(
if(word#i == m) then (
m = m+1;
index#i = ind;
)
);
ind = ind +1;
);
wordToTableau (tableau#partition,toList index)
)
rowPermutationTableaux = method()
rowPermutationTableaux(YoungTableau) := (tableau)->(
size:=sum(toList tableau#partition);
numbers:= apply (#(tableau#partition), i -> new MutableHashTable from tally tableau^i);
maxTableaux:=product(numbers, tal-> multinomial( tally values tal));
tableaux :=tableauList(tableau#partition,maxTableaux);
newTableau:= youngTableau(tableau#partition,toList ( size:(-1) ) );
recursiveRowPermutationTableaux((#tableau#partition-1,0),numbers,newTableau,tableaux);
toListOfTableaux tableaux
)
recursiveRowPermutationTableaux = method(TypicalValue => TableauList)
recursiveRowPermutationTableaux(Sequence, List,YoungTableau,TableauList):= (pos,numbers, tableau, tableaux) -> (
element:=0;
(row,col):= pos;
nextPos := (0,0);
if col + 1 == tableau#partition#row then nextPos = (row-1,0) else nextPos = (row,col+1);
for j in keys(numbers#row) do (
if not any (tableau_col, i-> i == j) then (
tableau_(row,col)=j;
numbers#row#j = numbers#row#j-1;
if(numbers#row#j == 0 ) then remove (numbers#row, j);
if nextPos#0 == -1 then addTableau(tableaux,tableau) else recursiveRowPermutationTableaux(nextPos,numbers,tableau,tableaux);
if numbers#row#?j then numbers#row#j = numbers#row#j+1 else numbers#row#j = 1;
tableau_(row,col)=-1;
);
);
)
hookLengthFormula = method(TypicalValue =>ZZ)
hookLengthFormula Partition := parti -> (
prod := (sum toList parti)!;
conj:= conjugate parti;
for i to #parti-1 do (
for j to parti#i-1 do(
prod = prod//(parti#i-j+conj#j-i-1);
);
);
prod
)
cycleDecomposition = method()
cycleDecomposition List := perm ->(
visited:= new MutableList;
for i to #perm-1 do (visited#i = 0);
ind:= 0;
visited#(ind) = 1;
cycles:= {};
while ind<#perm do (
newInd:= perm#(ind);
cycle := while newInd != ind list newInd do(
visited#(newInd) = 1;
newInd = perm#(newInd);
);
cycle = prepend(ind,cycle);
cycles = append(cycles,cycle);
for i from ind to #perm-1 when visited#i==1 do
(
ind = i;
);
ind = ind+1;
visited#(ind) = 1;
);
cycles
)
conjugacyClass = method()
conjugacyClass List := perm -> (
cycles:= cycleDecomposition perm;
new Partition from (reverse sort apply (cycles, c -> #c))
)
multinomial = method(TypicalValue => ZZ)
multinomial(Tally) := (p)->(
n:= sum p;
r:= n!;
r// product (keys p, i-> (i!)^(p#i))
)
multinomial( List) := (c)->(
r:= (sum c)!;
for i to #c-1 do r = r//((c#i)!);
r
)
multinomial Partition := p -> (
multinomial toList p
)
extendPermutation = method(TypicalValue => List)
extendPermutation(ZZ, List) := (n,per) -> (
numbers := sort(per);
j := 0;
result := new MutableList;
result#(n-1) = 0;
for i from 0 to n-1 do (
if(j < #per and i == numbers#j) then
(
result#(i) = per#j;
j = j+1;
)
else result#(i) = i;
);
result = toList result;
result
)
extendedPermutations = method()
extendedPermutations(ZZ,List ):= (n,numbers) -> (
perms:= permutations(numbers);
apply(perms, p-> extendPermutation(n,p))
)
directProductOfPermutations = method(TypicalValue =>List)
directProductOfPermutations(List,List):= (A,B) ->(
flatten apply(A, a->apply(B,b->a_b))
)
columnStabilizer=method(TypicalValue => List)
columnStabilizer(YoungTableau):= (tableau) ->(
n:= sum toList tableau#partition;
stab:=extendedPermutations(n,tableau_0);
for i from 1 to tableau#partition#0-1 do(
stab=directProductOfPermutations(stab,extendedPermutations(n,tableau_i));
);
stab
)
rowStabilizer=method(TypicalValue => List)
rowStabilizer(YoungTableau):= (tableau) ->(
n:= sum toList tableau#partition;
stab:=extendedPermutations(n,tableau^0);
for i from 1 to #tableau#partition-1 do(
stab=directProductOfPermutations(stab,extendedPermutations(n,tableau^i));
);
stab
)
permutationSign =method(TypicalValue=>ZZ)
permutationSign Partition := p -> (
tal := tally toList p;
product(keys tal, i->(-1)^((i+1)*tal#i))
)
permutationSign List := p -> (
permutationSign conjugacyClass p
)
combinations = method()
combinations(ZZ,ZZ):= (n,m)->(
combs:=tabloids new Partition from {m,n-m};
apply (combs#length, i-> flatten entries combs#matrix^{i})
)
SpechtModuleElement = new Type of HashTable
spechtModuleElement = method()
spechtModuleElement (YoungTableau, QQ) := (tableau,coef)-> (
new SpechtModuleElement from hashTable {partition => tableau#partition,
values => new MutableHashTable from hashTable {toList tableau#values => coef}}
)
spechtModuleElement (YoungTableau, ZZ) := (tableau,coef)-> (
new SpechtModuleElement from hashTable {partition => tableau#partition,
values => new MutableHashTable from hashTable {toList tableau#values => coef}}
)
spechtModuleElement YoungTableau := tableau -> spechtModuleElement(tableau,1)
spechtModuleElement (Partition, MutableHashTable):= (p,v) ->(
new SpechtModuleElement from hashTable {partition => p, values => v}
)
netTerm = method()
netTerm (YoungTableau,ZZ) := (tableau,coef)-> (
if coef == 0 then 0
else if coef == 1 then net tableau
else if coef == -1 then "- " | net tableau
else coef | " " |net tableau
)
QQ * SpechtModuleElement := (c,element) ->(
spechtModuleElement (element#partition, new MutableHashTable from applyValues (new HashTable from element#values,v-> if c!= 0 then v * c else continue))
)
ZZ * SpechtModuleElement := (c,element) ->(
spechtModuleElement (element#partition, new MutableHashTable from applyValues (new HashTable from element#values,v-> if c!= 0 then v * c else continue))
)
trim SpechtModuleElement := A -> scan (keys(A#values), tabloid -> if A#tabloid == 0 then remove (A#values,tabloid))
SpechtModuleElement + SpechtModuleElement := (A,B)-> (
if(A#partition===B#partition) then (
v := merge(A#values,B#values,(i,j)->(if i+j != 0 then i+j else continue));
spechtModuleElement(A#partition,v)
) else error "The elements do not belong to the same SpechtModule"
)
SpechtModuleElement - SpechtModuleElement := (A,B)-> (
A +(-1)*B
)
terms SpechtModuleElement:= A -> (
apply(keys A#values, tabloid-> (youngTableau(A#partition,tabloid),A#values#tabloid))
)
List SPACE SpechtModuleElement:= (perm,element)->(
vals := applyKeys(new HashTable from element#values, t->(
perm_t));
spechtModuleElement(element#partition,new MutableHashTable from vals)
)
net SpechtModuleElement := A -> (
netElement := net {};
tabloids := sort apply(keys A#values, t-> youngTableau(A#partition,t));
if #tabloids > 0 then (
t := first tabloids ;
netElement = netTerm(t,A#values#(toList t#values));
for t in drop(tabloids,1) do (
if A#values#(toList t#values) >0 then netElement = netElement | " + " | netTerm (t,A#values#(toList t#values))
else if A#values#(toList t#values) < 0 then netElement = netElement | " - " | netTerm (t,-(A#values#(toList t#values)));
);
);
netElement
)
straighteningAlgorithm = method(TypicalValue=> SpechtModuleElement)
straighteningAlgorithm(SpechtModuleElement) := (element)->(
sortColumnsTableau(element);
notStandard := select(1, terms element, t-> firstRowDescent(t#0) > (-1,-1));
while #notStandard != 0 do(
notStandard = first notStandard;
garnir:= garnirElement(notStandard);
element = element - garnir;
notStandard = select(1, terms element, t-> firstRowDescent(t#0) > (-1,-1));
);
element
)
straighteningAlgorithm(YoungTableau,ZZ):= (tableau,coef) ->(
element := spechtModuleElement (tableau,coef);
straighteningAlgorithm(element)
)
straighteningAlgorithm(YoungTableau):= tableau -> straighteningAlgorithm(tableau,1)
garnirElement = method()
garnirElement(YoungTableau,ZZ,ZZ,ZZ):= (tableau,coef,a,b)-> (
if(a >= #tableau#partition or b>=tableau#partition#a-1) then
error "Index out of bounds" else (
ans := {spechtModuleElement(tableau,coef)};
if (a,b) >= (0,0) then (
conju:= conjugate tableau#partition;
combs:= combinations(conju#b+1,a+1);
AB:= (tableau_(b+1))_{0..a}|(tableau_(b))_{a..conju#b-1};
ans = apply (combs,comb->(
newTableau:= youngTableau tableau;
for j to a do(
newTableau_(j,b+1)= AB#(comb#j);
);
for j from a+1 to conju#b do (
newTableau_(j-1,b) = AB#(comb#j);
);
sign:=sortColumnsTableau(newTableau);
spechtModuleElement (newTableau, (coef) *sign*permutationSign(conjugacyClass(comb)))
));
);
sum ans
)
)
garnirElement(YoungTableau,ZZ):= (tableau,coef) -> (
newTableau := youngTableau tableau;
ans:= {spechtModuleElement(newTableau,coef)};
(a,b):= firstRowDescent newTableau;
garnirElement(tableau,coef,a,b)
)
garnirElement(YoungTableau) := tableau -> garnirElement(tableau,1)
sortColumnsTableau = method()
sortColumnsTableau YoungTableau := tableau -> (
product(tableau#partition#0,i->sortColumn(tableau,i))
)
sortColumnsTableau SpechtModuleElement := element ->
(
scan (keys element#values, t -> (
y := youngTableau(element#partition,t);
coef := element#values#t;
remove(element#values,t);
sign:= sortColumnsTableau(y);
if(element#values#?(entries y)) then element#values#(entries y) = element#values#(entries y)+sign*coef
else element#values#(entries y) = coef*sign;
)
);
)
sortColumn = method()
sortColumn (YoungTableau,ZZ) := (tableau,i) -> (
col:= tableau_i;
sortedCol := sort col;
scan (#col, j->(tableau_(j,i)= sortedCol#j));
index := hashTable apply (#sortedCol,i-> sortedCol#i => i);
permutation:= apply(col,a->index#a );
permutationSign(permutation)
)
rsortList = method()
rsortList List := l -> (
sortedList := rsort l;
index := hashTable apply (#sortedList,i-> sortedList#i => i);
permutation:= apply(l,a->index#a);
(sortedList,permutationSign(permutation))
)
sortList = method()
sortList List := l -> (
sortedList := sort l;
index := hashTable apply (#sortedList,i-> sortedList#i => i);
permutation:= apply(l,a->index#a);
(sortedList,permutationSign(permutation))
)
YoungTableau ? YoungTableau := (tableau1,tableau2)-> rowDescentOrder(tableau1,tableau2)
rowDescentOrder = method()
rowDescentOrder(YoungTableau,YoungTableau):= (tableau1,tableau2)-> (
ans:= 0;
if(firstRowDescent tableau1 < firstRowDescent tableau2) then (
ans= symbol <;
)
else if ( firstRowDescent tableau1 > firstRowDescent tableau2) then (
ans = symbol >;
)
else (
ans = toList tableau1#values ? toList tableau2#values
);
ans
)
firstRowDescent= method()
firstRowDescent YoungTableau := tableau -> (
parti := conjugate(tableau#partition);
(a,b):= (#parti,0);
if not any(#parti,i->(b = i; any(parti#i, j-> (a = j;i+1 < tableau#partition#j and tableau_(j,i)>tableau_(j,i+1))))) then
(a,b) = (-1,-1);
(a,b)
)
toVector = method()
toVector (SpechtModuleElement,HashTable):= (element,index) -> (
ans:=mutableMatrix (QQ,1,#index);
scan(keys element#values, t-> ans_(0,index#t)= element#values#t);
matrix ans
)
toVector (SpechtModuleElement) := element -> (
stan:= standardTableaux element#partition;
index:= hashTable apply (stan#length,i->(flatten entries stan#matrix^{i} => i ));
toVector(element,index)
)
permutationMatrix = method()
permutationMatrix List := (perm) -> (
n:= #perm;
mat:=mutableMatrix(QQ,n,n);
for i to #perm-1 do (
mat_(i,perm#i)=1
);
matrix mat
)
powerSumSymmetricPolynomials = method()
powerSumSymmetricPolynomials PolynomialRing := R -> (
apply(numgens R, i-> (sum (gens R, x -> x^(i+1))))
)
elementarySymmetricPolynomials = method()
elementarySymmetricPolynomials PolynomialRing := R -> (
p := new Partition from {numgens R};
ans := new MutableList from (numgens R):0;
for i to numgens R -1 do (
l := toList ( (i+1):1 );
l = join(l , toList ( (numgens R - 1 -i):0));
y := youngTableau(p,l);
ele := rowPermutationTableaux y;
ans#i = sum (ele, t-> product(0..numgens R -1, j-> R_j^(t_(0,j)) ))
);
toList ans
)
cardinalityOfConjugacyClass = method(TypicalValue => ZZ)
cardinalityOfConjugacyClass(Partition) := p -> (
tal := tally(toList p);
base := keys(tal);
prod := product ( base, n-> ( n^(tal#n) ) * (tal#n)! );
(sum toList p)!//prod
)
matrixRepresentation = method()
matrixRepresentation(List,TableauList) := (permutation,standard)-> (
index:= hashTable apply (standard#length,i->(flatten entries standard#matrix^{i} => i ));
transpose matrix apply(standard#length,i->(
element:= spechtModuleElement(standard_i);
{toVector (straighteningAlgorithm (permutation element), index )})
)
)
matrixRepresentation(TableauList) := (standard)-> (
hashTable apply(permutations sum toList standard#partition, perm-> perm=> matrixRepresentation(perm,standard))
)
matrixRepresentation(List,Partition) := (permutation, parti)->(
standard := standardTableaux parti;
matrixRepresentation(permutation,standard)
)
matrixRepresentation(Partition) := (parti)->(
standard := standardTableaux parti;
matrixRepresentation(standard)
)
permutationMap = method()
permutationMap(List,PolynomialRing) := (permutation,R)->(
generatorList:= apply(permutation,i->R_(i) );
map(R,R,matrix{generatorList})
)
permutePolynomial = method()
permutePolynomial (List, RingElement) := (permutation,polynomial)-> (
if(isPolynomialRing ring polynomial) then
(permutationMap(permutation,ring polynomial)) polynomial
else error "argument is not a polynomial"
)
permutePolynomial(List,Product) := (permutation,polynomial) -> (
new Product from apply (toList polynomial,f-> permutePolynomial(permutation,f))
)
permutePolynomial(List,Sum) := (permutation,polynomial) -> (
new Sum from apply (toList polynomial,f-> permutePolynomial(permutation,f))
)
permutePolynomial(List,Power) := (permutation,polynomial) -> (
new Power from {permutePolynomial(permutation,polynomial#0),polynomial#1}
)
permutePolynomial(List,Number) := (permutation,n) -> n
permutePolynomial(List,Holder) :=
permutePolynomial(List,Minus) := (permutation,polynomial) -> (
new class polynomial from {permutePolynomial(permutation,polynomial#0)}
)
vandermondeDeterminant = method(Options => {AsExpression => false})
vandermondeDeterminant(List,PolynomialRing):= o-> (lista,R)->(
variables := apply(lista,i-> R_i);
if o.AsExpression then product flatten apply (#lista, i->toList apply( (i+1)..(#lista-1),j-> new Power from {(variables#j-variables#i),1} ) )
else product flatten apply (#lista, i->toList apply( (i+1)..(#lista-1),j-> (variables#j-variables#i) ) )
)
SpechtPolynomial = new Type of Expression
net SpechtPolynomial := polynomial -> (
str := " "|net(toList polynomial#1);
str = str||"S";
str = str||(" "|net(polynomial#0));
str^1
)
ring SpechtPolynomial := exp -> exp#2
value SpechtPolynomial := exp ->
(
spechtPolynomial(youngTableau(exp#1,exp#0),ring exp)
)
permutePolynomial (List,SpechtPolynomial) := (permutation, polynomial) -> new SpechtPolynomial from {(polynomial#0)_permutation, polynomial#1,polynomial#2}
spechtPolynomial = method(Options => {AsExpression => false})
spechtPolynomial ( YoungTableau, PolynomialRing ) := o->(tableau, R)-> (
product (numcols tableau, i->vandermondeDeterminant(tableau_i,R,AsExpression => o.AsExpression))
)
spechtPolynomials = method(Options => {AsExpression => false})
spechtPolynomials (Partition,PolynomialRing):= o->(partition,R)-> (
standard:= standardTableaux partition;
firstPolynomial:= spechtPolynomial(standard_0,R,AsExpression => o.AsExpression);
hashTable apply (standard#length, i-> getRow(standard,i) => permutePolynomial(getRow(standard,i) , firstPolynomial) )
)
indexMonomial = method()
indexMonomial(YoungTableau, YoungTableau, PolynomialRing) := (S,T,R) -> (
ind := indexTableau S;
monomial:= 1_R;
if(toList S#partition == toList T#partition) then (
monomial = product(size S, i -> R_((entries T)#i)^( (entries ind)#i) )
) else error "tableaux 1 and 2 do not have the same shape";
monomial
)
higherSpechtPolynomial = method(Options => {AsExpression => false , Robust => false})
higherSpechtPolynomial(YoungTableau, YoungTableau, PolynomialRing) := o-> (S,T,R)->(
if toList S#partition != toList T#partition then error "tableau shapes of S and T do not match";
if size S != numgens R then error "number of generators must be equal to the size of the tableaux";
ans:= R_0;
if(o.Robust) then (
monomial := indexMonomial(S,T,R);
sym:= sum (rowStabilizer T, sigma-> permutePolynomial(sigma,monomial));
sym = sym//leadCoefficient sym;
polynomial:= sum (columnStabilizer T, tau -> permutationSign(tau)*permutePolynomial(tau,sym));
if o.AsExpression then ans = factor polynomial else ans = polynomial
)
else (
rowPermutations := rowPermutationTableaux indexTableau S;
ans = spechtPolynomial(T,R,AsExpression =>o.AsExpression)*sum(rowPermutations, tab -> product apply (numcols S, i->
(
(sortedList,sign) := sortList(tab_i);
sortedList = sortedList - toList (0..(#(tab_i)-1));
sortedList = reverse sortedList;
firstZero := position(sortedList,i->i==0);
lastNonZero:= 0;
if (firstZero === null) then lastNonZero = #sortedList-1 else lastNonZero = firstZero -1;
partition:= new Partition from sortedList_{0..lastNonZero};
sign*schurPolynomial(T_i,partition,R,AsExpression => o.AsExpression)
)))
);
ans
)
higherSpechtPolynomials = method(Options => {AsExpression => false , Robust => false})
higherSpechtPolynomials(Partition,PolynomialRing):= o-> (partition,R) -> (
standard:= standardTableaux partition;
hashTable apply(standard#length, i-> getRow(standard,i) => higherSpechtPolynomials(standard_i,standard,R, Robust => o.Robust, AsExpression => o.AsExpression))
)
higherSpechtPolynomials(YoungTableau,PolynomialRing):= o->(S,R)-> (
standard:= standardTableaux S#partition;
higherSpechtPolynomials(S,standard,R,AsExpression => o.AsExpression, Robust => o.Robust)
)
higherSpechtPolynomials(YoungTableau,TableauList,PolynomialRing):= o->(S,standard,R)-> (
firstPolynomial:= higherSpechtPolynomial(S,standard_0,R,Robust => o.Robust, AsExpression => o.AsExpression);
hashTable apply (standard#length, i-> getRow(standard,i)=> permutePolynomial(getRow(standard,i),firstPolynomial))
)
higherSpechtPolynomials PolynomialRing := o-> R -> (
partis := partitions numgens R;
hashTable apply(partis,p-> p=> higherSpechtPolynomials(p,R,Robust => o.Robust, AsExpression => o.AsExpression))
)
generalizedVandermondeMatrix = method()
generalizedVandermondeMatrix(List,List,PolynomialRing):= (indices, exponents, R) -> (
if #indices != #exponents then error "number of indices and exponents does not match";
M := matrix apply (exponents, e-> apply (indices, i-> (R_i)^e));
M
)
SchurPolynomial = new Type of Expression
permutePolynomial(List,SchurPolynomial) := (permutation,polynomial) -> (
new SchurPolynomial from {permutation_(polynomial#0),polynomial#1,polynomial#2}
)
net SchurPolynomial := expr -> (
str := " "|net(toList expr#1);
str = str||"s";
str = str||(" "|net(expr#0));
str^1
)
ring SchurPolynomial := exp -> exp#2
value SchurPolynomial := exp ->
(
schurPolynomial(exp#0,exp#1,ring exp)
)
schurPolynomial = method(Options => {AsExpression => false, Strategy=>"semistandard_tableaux"})
schurPolynomial(List,Partition,PolynomialRing) := o->(indices, partition, R) -> (
ans := 0;
ans= 1_R;
if #indices < #partition then error "size of indices and exponents does not match";
if o.Strategy == "determinant" then (
exponents := join (toList (#indices - #partition:0), reverse toList partition) + toList 0..(#indices-1);
ans = determinant generalizedVandermondeMatrix(indices,exponents,R)// vandermondeDeterminant(indices,R))
else if o.Strategy == "semistandard_tableaux" then (
if #partition == 0 then ans = 1_R else (
semistandard := semistandardTableaux(partition, #indices );
ans = sum(semistandard#length, i-> product(getRow(semistandard,i),j->R_(indices#j)))
);
);
if o.AsExpression then ans = factor(ans) ;
ans
)
increasing = method()
increasing List := lista -> (
all(#lista-1, i-> lista#i <= lista#(i+1))
)
decreasing = method()
decreasing List := lista -> (
all(#lista-1, i-> lista#i >= lista#(i+1))
)
generatePermutationGroup = method()
generatePermutationGroup List := gens -> (
group:= hashTable apply (gens , g -> g=> 0 );
products:= group;
for g in keys group do products = merge (products, applyKeys (group, h-> g_h), (i,j)-> i+j);
while #group < #products do(
group = products;
products = group;
for g in keys group do products = merge (products, applyKeys (group, h-> g_h), (i,j)-> i+j);
);
keys group
)
representationMultiplicity = method()
representationMultiplicity(Tally,Partition,CharacterTable):= (tal,partition,charTable)-> (
partis:= partitions sum toList partition;
sum(keys tal, p ->(charTable_(partition,p)*tal#p))// sum values tal
)
representationMultiplicity(Tally,Partition):= (tal,partition)-> (
charTable := characterTable sum toList partition;
representationMultiplicity(tal,partition,charTable)
)
vectorToPolynomial = method()
vectorToPolynomial(List,HashTable,TableauList):= (vector, basis,standard)->(
sum ( #vector, i-> if(vector#i == 0) then 0 else vector#i*basis#( getRow(standard,i)) )
)
secondaryInvariants = method(Options => { AsExpression => false, Robust => false })
secondaryInvariants(List,PolynomialRing):= o->(gens,R)-> (
if #gens#0 != numgens R then error "the size of the elements does not match the number of generators of R";
H := generatePermutationGroup gens;
tal := tally apply (H,h->conjugacyClass h);
partis := partitions numgens R;
charTable := characterTable numgens R;
hashTable apply (partis, p-> (
multi := representationMultiplicity(tal,p,charTable);
print(p,"Ambient_Dimension",hookLengthFormula(p),"Rank",multi);
if multi == 0 then p=> {}
else (
standard := standardTableaux p;
isotypicalComponentBasis := higherSpechtPolynomials(p,R,AsExpression => o.AsExpression, Robust => o.Robust);
if multi==standard#length then (
index:= hashTable apply (standard#length, i-> getRow(standard,i)=> i);
p => hashTable apply(keys isotypicalComponentBasis, S->( S=>
applyKeys(isotypicalComponentBasis#S, T-> index#T) ) )
) else
(
V:=(coefficientRing R)^(standard#length);
for h in gens do (
M:= matrixRepresentation(h,standard);
V = intersect(V,ker ( M - id_(source M ) ) );
);
vectors:= generators V;
p => hashTable apply (keys isotypicalComponentBasis,S-> ( S =>
hashTable apply (numColumns vectors, i-> i=>
(vectorToPolynomial(flatten entries vectors_{i},isotypicalComponentBasis#S,standard ))) ))
)
)
)
)
)
beginDocumentation()
multidoc ///
Node
Key
SpechtModule
Headline
a package for constructing Specht Modules
Description
Text
{\em SpechtModule} calculates many objects related to the irreducible representations of the symmetric functions.
This construction is used to implement an algorithm in invariant theory which calculates efficiently the secondary
invariants of any permutation group.
The main features of the package include a method for calculating the character table of $S_n$, algorithms for
calculating list of tableaux given a partition (tabloids, standard tableaux and semistandard tableaux among others)
an implementation of the straightening algorithm which includes an implementation of the Garnir element given a tableau
an a row descent. Methods for calculating Higher Specht Polynomials which give a basis of
the Specht Modules that arise in the coinvariant ring of $S_n$ which is the quotient $k[x_1,..,x_n]/({\rm Sym}(n)^+)$.
And finally methods for calculating the secondary invariants described above.
Caveat
An improvement can be made by finding an efficient way to calculate or represent Schur Polynomials
Node
Key
CharacterTable
(net, CharacterTable)
Headline
the class of character tables
Description
Text
This type represents the character table of a symmetric group. It is implemented as a
hash table that stores the list of partitions, the size of the table and a
matrix which stores the values of the table.
Example
charTable = characterTable 5
a = new Partition from {3,1,1}; b = new Partition from {1,1,1,1,1}
peek charTable
SeeAlso
characterTable
Node
Key
(symbol _,CharacterTable, Sequence)
Headline
retrieves an entry from the character table
Usage
charTable_(a,b)
Inputs
charTable:CharacterTable
pos:Sequence
the position (a,b) to be consulted. It can be given by either a number or a Partition
Outputs
:ZZ
the number in the position
Description
Example
charTable = characterTable 5
a = new Partition from {3,1,1}; b = new Partition from {1,1,1,1,1}
charTable_(0,0)
charTable_(a,b)
SeeAlso
characterTable
Node
Key
(innerProduct,ZZ,MutableMatrix,MutableMatrix)
innerProduct
Headline
calculates the inner product for the characters of S_n
Usage
innerProduct(n,X,Y)
Inputs
n:ZZ
the degree of the symmetric group
X:MutableMatrix
a matrix row that represents a character of S_n
Y:MutableMatrix
a matrix row that represents a character of S_n
Outputs
:ZZ
the inner product of the two characters X and Y
Description
Text
The character table for two characters $X$ and $Y$ of $G$ is calculated using the formula
$<X,Y> = \sum_{g \in G} X(g)Y(g) = \sum_{C \in Cl(G)} |C|X(g_C)Y(g_C) $
where the second sum is taken over all conjugacy classes of $G$ and $g_c$ is an element
in the conjugacy class.
As an example we calculate the inner product between the character of the
regular representation of $S_4$ and the character indexed by partition {2,1,1}.
Example
n = 4
X = mutableMatrix {{0,0,0,0,24}}
Y = mutableMatrix {{1,0,-1,-1,3}}
innerProduct(4,X,Y)
Text
As expected this inner product is equal to 3.
Node
Key
((symbol _,symbol =),CharacterTable, Sequence)
Headline
modifies an entry from the character table
Usage
charTable_(a,b)=e
Inputs
charTable:CharacterTable
pos:Sequence
the position (a,b) to be consulted. It can be given by either a number or a Partition
e:Thing
the number to be put in the position
Outputs
:ZZ
the number in the position
Description
Example
charTable = characterTable 5
a = new Partition from {3,1,1}; b = new Partition from {1,1,1,1,1}
charTable_(0,0)=-100
charTable_(a,b)=100
charTable
SeeAlso
characterTable
Node
Key
characterTable
(characterTable,ZZ)
Headline
returns the character table of the symmetric group
Usage
characterTable n
Inputs
n:ZZ
the degree of the symmetric group
Outputs
:CharacterTable
the character table with the irreducible characters of $S_n$ indexed by partitions
Description
Text
This method construct the irreducible characters of $S_n$. The method works by recursively calculating the
character tables for the permutation modules of $S_n$. Then applying Gram-Schimdt algorithm to this
characters using the inner product of characters we obtain the irreducible characters of $S_n$
SeeAlso
CharacterTable
Node
Key
YoungTableau
(net,YoungTableau)
Headline
the class of Young Tableaux
Description
Text
This type represents a Young Tableau. It is implemented as a MutableHashTable. This hash table stores
a partition that represents a shape of the tableau. The filling of the tableau is stored as a
mutable list.
Example
p = new Partition from {3,2}
y = youngTableau(p,{1,0,2,3,4})
peek y
Node
Key
youngTableau
(youngTableau,Partition)
(youngTableau,Partition,List)
(youngTableau,Partition,MutableList)
Headline
the constructor method for the class YoungTableau
Usage
youngTableau(p,l)
Inputs
p:Partition
the shape of the tableau
l:List
the filling of the tableau, if it is not provided then it is assume that the filling is zero.
Outputs
:YoungTableau
a Young tableau with the given shape and filling
SeeAlso
YoungTableau
Node
Key
(youngTableau,YoungTableau)
Headline
creates a copy of a YoungTableau object
Usage
youngTableau(y)
Inputs
y:YoungTableau
a Young tableau
Outputs
:YoungTableau
a copy of y
Description
Example
p = new Partition from {3,2}
l = {2,1,0,3,4}
y = youngTableau(p,l)
y1 = youngTableau y
y == y1
y === y1
Node
Key
(tableauToList,YoungTableau)
tableauToList
Headline
converts a YoungTableau to list form
Usage
tableauToList(y)
Inputs
y:YoungTableau
a Young tableau
Outputs
:List
a doubly nested list, the list of rows of the tableau
Description
Example
p = new Partition from {2,2,1}
l = {2,1,0,3,4}
y = youngTableau(p,l)
tableauToList y
Node
Key
(listToTableau,List)
listToTableau
Headline
constructs a Young Tableau from a doubly nested list of numbers
Usage
listToTableau(l)
Inputs
l:List
a doubly nested list of numbers
Outputs
:YoungTableau
a Young Tableau, such that the rows corresponds to the elements of l
Description
Example
l = {{0,1,2},{3,4},{5}}
listToTableau l
Node
Key
(symbol _,YoungTableau,Sequence)
Headline
retrieves the entry in cell (a,b) from a Young Tableau
Usage
y_(a,b)
Inputs
y:YoungTableau
pos:Sequence
the position (a,b) of the cell where a is the row and b the column
Outputs
:ZZ
the number in the cell at the position (a,b) of the tableau y
Description
Example
y = youngTableau(new Partition from {2,2},{0,2,1,3})
y_(0,0)
y_(1,1)
Node
Key
((symbol _,symbol =),YoungTableau,Sequence)
Headline
changes the entry in cell (a,b) from a Young Tableau
Usage
y_(a,b) = e
Inputs
y:YoungTableau
pos:Sequence
the position (a,b) of the cell where a is the row and b the column
e:Thing
a number, the new entry of the cell
Outputs
:YoungTableau
the number in the cell at the position (a,b) of the tableau y
Description
Example
y = youngTableau(new Partition from {2,2},{0,2,1,3})
y_(0,0)=1
y
Node
Key
(symbol ^,YoungTableau,ZZ)
Headline
retrieves a row from a Young Tableau
Usage
y^n
Inputs
y:YoungTableau
n:ZZ
the number of the row
Outputs
:ZZ
the number added
Description
Example
y = youngTableau(new Partition from {3,2},{0,2,1,3,4})
y^0
y^1
Node
Key
(symbol _,YoungTableau,ZZ)
Headline
retrieves a column from a Young Tableau
Usage
y_n
Inputs
y:YoungTableau
n:ZZ
the number of the row
Outputs
:ZZ
a list of the numbers that appear in row n of y
Description
Example
y = youngTableau(new Partition from {3,2},{0,2,1,3,4})
y_0
y_1
Node
Key
(symbol ==,YoungTableau,YoungTableau)
Headline
checks whether two tableaux are equivalent
Usage
y1 == y2
Inputs
y1:YoungTableau
y2:YoungTableau
Outputs
:ZZ
true if the shape and filling of tableaux y1 and y2 are the same
Description
Example
y = youngTableau(new Partition from {3,2},{0,2,1,3,4})
y1 = youngTableau(new Partition from {3,2},{0,2,1,3,4})
y == y1
y2 = youngTableau(new Partition from {2,2,1},{0,2,1,3,4})
y == y2
Node
Key
(entries,YoungTableau)
Headline
returns the filling of the tableau
Usage
entries y
Inputs
y:YoungTableau
Outputs
:List
returns the filling of the tableau
Description
Example
y = youngTableau(new Partition from {3,1,1},{2,0,1,4,3})
entries y
Node
Key
(numcols,YoungTableau)
Headline
returns the number of columns of a tableau
Usage
numcols y
Inputs
y:YoungTableau
Outputs
:ZZ
the number of columns of the tableau
Description
Example
y = youngTableau(new Partition from {2,1,1,1},{2,0,1,4,3})
numcols y
Node
Key
(numrows,YoungTableau)
Headline
returns the number of rows of a tableau
Usage
numrows y
Inputs
y:YoungTableau
Outputs
:ZZ
the number of rows of the tableau
Description
Example
y = youngTableau(new Partition from {2,1,1,1},{2,0,1,4,3})
numrows y
Node
Key
(size,YoungTableau)
Headline
returns the number of cells of a tableau
Usage
size y
Inputs
y:YoungTableau
Outputs
:ZZ
the number of cells rows of the tableau
Description
Text
The size is calculated as the sum of the numbers in the partition associated to the tableau
Example
y = youngTableau(new Partition from {2,1,1,1},{2,0,1,4,3})
size y
Node
Key
(symbol ?, YoungTableau,YoungTableau)
Headline
an order of YoungTableaux
Usage
y1 ? y2
Inputs
y1:YoungTableau
y2:YoungTableau
Outputs
:Boolean
either "=", "<" or ">"
Description
Text
The order implemented checks where is the first row descent of the tableau. Then it applies
lexicographical order to the coordinates of these cells.
If the row descent is in the same cell then the lexicographical order for the filling is outputted.
This order is implemented for th net of SpechtModuleElement
so that the terms with some row descent appear last.
Example
p = new Partition from {2,1}
y1 = youngTableau(p,{1,0,2})
y2 = youngTableau(p,{0,2,1})
y1 ? y2
sort {y1,y2}
Node
Key
(addTableau,TableauList,YoungTableau)
(addTableau,TableauList,List)
addTableau
Headline
adds a Young Tableau in the list
Description
Text
The following is an example of how does the method addTableau work
Example
p = new Partition from {2,1}
y1 = youngTableau(p,{0,1,2})
y2 = youngTableau(p,{0,2,1})
t = tableauList p
addTableau(t, y1)
addTableau(t, y2)
addTableau(t, {1,2,0})
peek t
Node
Key
TableauList
(net,TableauList)
Headline
the class of list of tableaux
Description
Text
This type represents a list of tableaux of the same size. They are represented as a MutableHashTable.
A matrix in this hash table stores the filling of every tableau in the list. This representation
is particularly useful when only the filling of the tableau is needed.
Example
p = new Partition from {2,1}
y1 = youngTableau(p,{0,1,2})
y2 = youngTableau(p,{0,2,1})
y3 = youngTableau(p,{1,2,0})
t = tableauList p
addTableau(t, y1)
addTableau(t, y2)
addTableau(t, y3)
peek t
Node
Key
(tableauList,Partition,ZZ)
(tableauList,Partition)
tableauList
Headline
the constructor for the type TableauList
Usage
tableauList(p,n)
tableauList(p)
Inputs
p:Partition
the shape for the tableaux
n:ZZ
the number of tableaux in the list, if is not provided then the default value
multinomial p is used. See multinomial.
Outputs
:TableauList
an empty TableauList with space for n tableaux
Description
Example
p = new Partition from {2,1}
y = youngTableau(p,{0,1,2})
t = tableauList p
addTableau(t,y)
peek t
t1 = tableauList (p,5)
addTableau(t1,y)
peek t1
Node
Key
(symbol _,TableauList,ZZ)
Headline
a method that retrieves the tableaux from the list
Usage
tableaux_i
Inputs
tableaux:TableauList
i:ZZ
the index of the tableau to be retrieved
Outputs
:YoungTableau
the YoungTableau stored at position i
Description
Example
p = new Partition from {2,1}
y1 = youngTableau(p,{0,1,2})
y2 = youngTableau(p,{0,2,1})
y3 = youngTableau(p,{1,2,0})
t = tableauList p;
addTableau(t, y1);
addTableau(t, y2);
addTableau(t, y3);
t_0
t_2
Node
Key
(toListOfTableaux,TableauList)
toListOfTableaux
Headline
converts an object of type TableauList into a list of YoungTableau objects
Usage
toListOfTableaux(tableaux)
Inputs
tableaux:TableauList
Outputs
:List
a list of the tableaux stored in the TableauList
Description
Example
p = new Partition from {2,1}
y1 = youngTableau(p,{0,1,2})
y2 = youngTableau(p,{0,2,1})
y3 = youngTableau(p,{1,2,0})
t = tableauList p
addTableau(t, y1)
addTableau(t, y2)
addTableau(t, y3)
toListOfTableaux t
Node
Key
(tabloids, Partition)
tabloids
Headline
the list of tabloids for a given partition
Usage
tabloids(p)
Inputs
p:Partition
Outputs
:TableauList
the list of tabloids
Description
Text
Tabloids are the equivalence class of tableaux under the row permutation equivalence relation.
Two tabloids are row permutation equivalent if one can be obtained from the other by permuting elements in its rows.
For every tabloid there is a unique representative such that its rows
are increasing. This representatives are the ones calculated by the method
tabloids().
Tabloids are the basis of the permutation modules from which the Specht Modules are constructed.
Example
p = new Partition from {3,2}
tabloids p
Node
Key
(standardTableaux, Partition)
standardTableaux
Headline
the list of standard tableaux of shape p
Usage
standardTableaux(p)
Inputs
p:Partition
Outputs
:TableauList
the list of standard tableaux
Description
Text
The standard tableaux of a given partition $\lambda$ are tableaux of shape p.
Such that they are both row and column increasing. This set of tableaux are
very important because they are in bijection with the basis of the Specht module
$S^\lambda$.
The method calculates this tableaux recursively filling the cells of the Ferrer diagram
and checking if the rows and columns are still increasing.
Example
p = new Partition from {3,2}
standardTableaux p
Node
Key
(semistandardTableaux, Partition, ZZ)
semistandardTableaux
Headline
the list of semistandard tableaux of shape p and filling with the numbers from 0 to n-1.
Usage
standardTableaux(p,n)
Inputs
p:Partition
the shape of the tableaux
n:ZZ
a limit of the range of numbers that appear in the tableaux
Outputs
:TableauList
the list of semistandard tableaux
Description
Text
The semistandard tableaux are tableaux that are strictly decreasing in rows and
weakly decreasing in rows.
Example
p = new Partition from {3,2}
semistandardTableaux (p,4)
Node
Key
(readingWord,YoungTableau)
readingWord
Headline
gives the reading word of a given tableau
Usage
readingWord(y)
Inputs
y:YoungTableau
a Young tableau
Outputs
:List
the reading word of the Young tableau
Description
Text
The reading word of a tableau is word obtain by reading each column from the bottom up and reading
the columns from left to right. The reading word is used to calculate the cocharge statistic of the given tableau.
Example
p = new Partition from {3,2}
y = youngTableau(p,{0,2,3,1,4})
readingWord(y)
Node
Key
(indexTableau,YoungTableau)
indexTableau
Headline
the index tableau for a given tableau
Usage
indexTableau(y)
Inputs
y:YoungTableau
Outputs
:YoungTableau
the index tableau
Description
Text
The index tableau is a filling obtained by the original tableau using the reading word.
To every element in the reading word a number is given recursively in the following way.
f(0) = 0 and f(k+1) = f(k) if k+1 appear to the right of k. Otherwise f(k+1)= f(k)+1.
Finally the entries in the original tableau are replaced by the values of the function f.
Example
p = new Partition from {3,2}
y = youngTableau(p,{0,2,3,1,4})
readingWord(y)
indexTableau(y)
Node
Key
(rowPermutationTableaux, YoungTableau)
rowPermutationTableaux
Headline
the list of row permutations without repetitions in columns
Usage
rowPermutationTableaux(y)
Inputs
y:YoungTableau
a tableau, generally the index tableau of a standard tableau
Outputs
:List
the list of all row permutations of the tableau
Description
Text
This list of tableaux is used to calculate more efficiently higher Specht polynomials.
If any of the columns has a repetition then the associated term in the higher Specht polynomial
for this row permutation is zero. This is why such permutations are omitted.
Example
p = new Partition from {3,2}
y = youngTableau(p, {0,2,1,3,4})
ind = indexTableau y
rowPermutationTableaux ind
Node
Key
(hookLengthFormula, Partition)
hookLengthFormula
Headline
a formula for the number of standard tableaux
Usage
hookLengthFormula(p)
Inputs
p:Partition
a partition that indexes a Specht Module
Outputs
:ZZ
the dimension of the Specht module S_\lambda
Description
Text
The hook length formula is a method that counts the number of
standard tableaux of a given shape p. Therefore it counts the
dimension of the associated Specht module.
For each Ferrer diagram and each cell (a,b) the hook at (a,b) is
the set of cells that comprise (a,b) the cells that are below (a,b),
and the cells that are to right of (a,b). The hook length of a hook h(a,b) is
defined of the number of cells in the hook.
If p is a partition of n then the hook length formula for p is
$ n!/\prod_{(a,b)} h(a,b) $
Example
p = new Partition from {3,2}
standardTableaux p
hookLengthFormula p
Node
Key
(cycleDecomposition, List)
cycleDecomposition
Headline
the cycle decomposition of a permutation
Usage
cycleDecomposition perm
Inputs
perm:List
a permutation of the list of numbers from 0 to n-1
Outputs
:List
a doubly nested list with cycles of the permutation
Description
Text
Every permutation has a decomposition as the concatenation of disjoint cycles.
This decomposition is used to calculate the conjugacy class of the permutation.
Example
cycleDecomposition {0,1,2,3,4}
cycleDecomposition {1,3,2,0,4}
Node
Key
(conjugacyClass, List)
conjugacyClass
Headline
the conjugacy class of a permutation
Usage
conjugacyClass perm
Inputs
perm:List
a permutation of the list of numbers from 0 to n-1
Outputs
:Partition
a partition that represents the conjugacy class of the permutation
Description
Text
The method first calculates the cycle decomposition of the permutation
Then the conjugacy class is the partition given by the lengths of the
cycles in the decomposition
Example
cycleDecomposition {0,1,2,3,4}
conjugacyClass {0,1,2,3,4}
cycleDecomposition {1,3,2,0,4}
conjugacyClass {0,1,2,3,4}
Node
Key
multinomial
(multinomial, Tally)
(multinomial, List)
(multinomial, Partition)
Headline
a formula for the multinomial coefficient
Usage
multinomial(tal)
multinomial(l)
multinomial(p)
Inputs
p:Partition
a partition
l:List
a list of non negative numbers
tal:Tally
a tally from a list
Outputs
:ZZ
the multinomial coefficient of the given list
Description
Text
The multinomial coefficient is a generalization of the binomial coefficient.
Given a list of number $k_1,\ldots,k_l$, the multinomial coefficient is
$n!/(k_1!\ldots,k_l!)$ where $n = \sum k_i$. The multinomial coefficient is calculated
because it gives the numbers of tabloids for a given partition.
The list of numbers used to calculate the multinomial can be given
as a list, a partition or a tally. This last option was added to optimize
this calculation.
Example
p = new Partition from {2,2}
tabloids p
multinomial {2,2}
multinomial tally {2,2}
Node
Key
(rowStabilizer,YoungTableau )
rowStabilizer
Headline
the row stabilizer of the tableau
Usage
rowStabilizer(y)
Inputs
y:YoungTableau
Outputs
:List
a doubly nested list with the permutations in the row stabilizer
Description
Text
The row stabilizer of a tableau is the group of the permutations that fixes the rows of
the tableau. In terms of tabloids it is the stabilizer of a tabloid under the action of the
group of permutations S_n. This group is used in the calculation of polytabloids and Specht polynomials.
Example
p = new Partition from {2,2,1}
y = youngTableau(p,{0,3,1,4,2})
rowStabilizer y
Node
Key
(columnStabilizer,YoungTableau )
columnStabilizer
Headline
the column stabilizer of the tableau
Usage
columnStabilizer(y)
Inputs
y:YoungTableau
Outputs
:List
a doubly nested list with the permutations in the column stabilizer
Description
Example
p = new Partition from {2,2,1}
y = youngTableau(p,{0,3,1,4,2})
columnStabilizer y
SeeAlso
rowStabilizer
Node
Key
permutationSign
(permutationSign,List )
(permutationSign,Partition)
Headline
the sign of a permutation
Usage
permutationSign(perm)
Inputs
perm:List
a permutation of the numbers from 0 to n-1
p:Partition
a partition that represents the conjugacy class of the permutation
Outputs
:ZZ
1 or -1, the sign of the permutation
Description
Text
Every permutation can be decompose as a product of transpositions.
This decomposition is not unique, however the parity of the number
of transpositions that appears in the decomposition is always the same.
Thus the sign is defined as $(-1)^l$ where $l$ is the number of transposition.
The sign can be calculated if the cycle decomposition if known because
the sign is multiplicative and the sign of a $k$-cycle is $(-1)^(k+1)$.
This is the way the method permutationSign calculates the sign.
The sign permutation is used to calculate polytabloids and higher Specht polynomials.
Example
perm = {2,1,4,3,0}
c = cycleDecomposition perm
permutationSign perm
perm2 = {4,2,1,0,3}
c2 = cycleDecomposition perm2
permutationSign perm2
Node
Key
SpechtModuleElement
(symbol *,QQ, SpechtModuleElement)
(symbol *,ZZ, SpechtModuleElement)
(trim,SpechtModuleElement)
(symbol +,SpechtModuleElement, SpechtModuleElement)
(symbol -,SpechtModuleElement, SpechtModuleElement)
(terms,SpechtModuleElement)
(symbol SPACE,List, SpechtModuleElement)
(net, SpechtModuleElement)
Headline
the class of Specht Module elements
Description
Text
Polytabloids of shape $p$ are elements of the module of tabloids of the form
$\sum_{\tau \in C(T)}\sum_{\sigma \in R(T)}sgn(\tau) \tau\sigma(T)$
where T is a tabloid of shape $p$.
The set of polytabloids generates the Specht Module of shape $p$.
In other words the element in a SpechtModule are linear combinations of
polytabloids. This is the way such elements are implemented in this package.
The constructor takes just one polytabloid and a coefficient
Example
p = new Partition from {3,2,1}
y = youngTableau(p,{2,0,3,4,5,1})
e = spechtModuleElement(y,-2)
Text
More complex elements can be made by adding or subtracting previously build elements
and multiplying by any element of the base field (which is assumed to be \mathbb{Q}).
Example
y2 = youngTableau(p,{5,0,2,4,1,3})
e2 = spechtModuleElement(y2)
e+e2
e-e2
3*oo
Text
The element SpechtModuleElement is implemented as a MutableHashTable.
The keys are the filling of the tableaux that label the polytabloids and they
point to their respective coefficients
Example
peek oo
peek ooo#values
Text
The method terms is used to retrieve the polytabloid with their respective coefficient.
This is given as a list of pairs of tableaux and coefficients.
Example
terms (3*(e-e2))
Text
A method was implemented to apply a permutation to a SpechtModuleElement.
The action is defined by permuting the entries of the tableaux that label the
polytabloids.
Example
{0,1,2,3,4,5} (3*(e-e2))
{1,0,2,3,4,5} (3*(e-e2))
SeeAlso
spechtModuleElement
Node
Key
spechtModuleElement
(spechtModuleElement,YoungTableau)
(spechtModuleElement,YoungTableau,QQ )
(spechtModuleElement,YoungTableau,ZZ )
(spechtModuleElement,Partition,MutableHashTable)
Headline
the constructor for the class SpechtModuleElement
Usage
spechtModuleElement(p,v)
spechtModuleElement(y,n)
spechtModuleElement(y,m)
spechtModueElement(y)
Inputs
y:YoungTableau
the label of the polytabloid
n:ZZ
a number. If not specified then it is assumed to be a 1.
m:QQ
a number. If not specified then it is assumed to be a 1.
p:Partition
A partition that index a module
v:MutableHashTable
A mutable hash table from a SpechtModuleElement
Outputs
:SpechtModuleElement
an element of the form n*poly_y, where poly_y is the polytabloid labeled by the tableau y.
Description
Text
The basic constructor builds a SpechtModuleElement from just one polytabloid and
its respective coefficient.
Example
p = new Partition from {3,2,1}
y = youngTableau(p,{2,0,3,4,5,1})
spechtModuleElement(y,-2)
spechtModuleElement(y)
Node
Key
garnirElement
(garnirElement,YoungTableau, ZZ,ZZ,ZZ )
(garnirElement,YoungTableau,ZZ )
(garnirElement,YoungTableau)
Headline
a SpechtModuleElement that is equal to zero
Usage
garnirElement(y,coef,a,b)
garnirElement(y,coef)
garnirElement(y)
Inputs
y:YoungTableau
a tableau that labels a polytabloid
a:ZZ
the row of the descent
b:QQ
the column of the descent
coef:ZZ
the coefficient of the polytabloid
Outputs
:SpechtModuleElement
an element which is equal to zero.
Description
Text
A Garnir element is an element which is constructed to remove row descents from a tableau.
Given a tableau $T$, the Garnir element is defined for a subset $A$ of the $i$th column and a subset $B$ of the $i+1$ column.
It is defined as $ \sum_{\pi} sgn(\pi)\pi(T)$. The $\pi$ are called transversals. They are a set of permutations such that
$S_{A \cup B}$ is the disjoint union of $\pi(S_A \times S_B)$.
The identity can always be chosen as a transversal for any pair of sets. Therefore the original tableau $T$ appears along side other tableaux which are
closer to being standard. Another property is that this element is equal to zero. Therefore the original polytabloid $e_T$ can be written as
$ e_T = -\sum_{\pi \neq id} sgn(\pi)\pi(e_T) $
In this implementation the $i$th column is taken to be the parameter b. The set $A$ is all the cells in the $i$th column from the a-th row to the bottom.
The set $B$ is all the cells in the $i+1$ column from the a-th row to the top.
If the number (a,b) are not specified then they are taken as the coordinates of the first row descent of $T$
Example
p = new Partition from {3,2,1}
y = youngTableau(p,{1,2,3,5,4,6})
garnirElement y
SeeAlso
firstRowDescent
Node
Key
straighteningAlgorithm
(straighteningAlgorithm, SpechtModuleElement )
(straighteningAlgorithm,YoungTableau,ZZ )
(straighteningAlgorithm,YoungTableau)
Headline
an algorithm for expressing any polytabloid as linear combinations of standard polytabloids
Usage
straighteningAlgorithm(ele)
straighteningAlgorithm(y,coef)
straighteningAlgorithm(y)
Inputs
ele:SpechtModuleElement
a SpecthModuleElement
y:YoungTableau
a tableau that labels a polytabloid
coef:ZZ
the coefficient of the polytabloid
Outputs
:SpechtModuleElement
the same SpechtModuleElement written as a linear combination of standard polytabloids
Description
Text
The straigtening algorithm works by finding the first term that is not standard. Then, taking as coordinates
the first row descent, it calculates the Garnir element of this tableaux. It then rewrites
the SpechtModuleElement substituting the term by the linear combination given by the garnir element.
Example
p = new Partition from {3,2,1}
y = youngTableau(p,{1,2,3,5,4,6})
garnirElement y
SeeAlso
garnirElement
Node
Key
(sortColumnsTableau, YoungTableau)
Headline
a method for
Usage
sortColumnsTableau(y)
Inputs
y:YoungTableau
Outputs
:ZZ
the sign of the permutation that sorts the columns of the tableau
Description
Text
This method sorts the columns of the tableau and retrieves the sign of the associated permutation
Example
p = new Partition from {2,2,1}
y = youngTableau(p,{0,1,4,3,2})
sortColumnsTableau y
y
Node
Key
(sortColumnsTableau, SpechtModuleElement)
sortColumnsTableau
Headline
a method for sorting the columns of the tableaux in a SpechtModuleElement
Usage
sortColumnsTableau(ele)
Inputs
ele:SpechtModuleElement
Outputs
:null
Description
Text
This method sorts the columns of every tableaux that appears as a term of the SpechtModuleElement.
The corresponding sign of the sort is multiplied to the coefficient of the respective term.
The method returns null but changes the SpechtModuleElement that was input as a parameter.
Example
p = new Partition from {2,2,1}
y1 = youngTableau(p,{0,1,4,3,2})
y2 = youngTableau(p,{0,3,4,1,2})
ele = spechtModuleElement(y1)-spechtModuleElement(y2)
sortColumnsTableau ele
ele
Node
Key
(firstRowDescent, YoungTableau)
firstRowDescent
Headline
retrieves the first row descent of a Young tableau
Usage
firstRowDescent y
Inputs
y:YoungTableau
Outputs
a:ZZ
the row of the row descent or -1 if there is no row descent
b:ZZ
the column of the row descent or -1 if there is no row descent
Description
Text
A row descent is defined to be a cell (a,b) in a tableau $T$ such that T_(a,b)>T_(a,b+1).
This method reads by columns from left to right and each column is read from the top down until the first row descent is found.
If no row descent is found the pair (a,b)= (-1,-1) is returned.
Example
p = new Partition from {3,2,1}
y = youngTableau(p,{1,2,3,5,4,6})
firstRowDescent y
y2 = youngTableau(p,{1,2,4,3,5,6})
firstRowDescent y2
Node
Key
(cardinalityOfConjugacyClass, Partition)
cardinalityOfConjugacyClass
Headline
the size of the conjugacy classes of S_n
Usage
cardinalityOfConjugacyClass p
Inputs
p:Partition
a partition that indexes a conjugacy class of S_n
Outputs
:ZZ
the size of the conjugacy class
Description
Text
The formula for this classes is obtained by the Orbit-Stabilizer lemma applied for S_n
with the action of conjugation.
For a partition $p$ this formula is $n!/(\prod_i (\lambda_i )!i^\lambda_i$, where $\lambda_i$ denotes the number
of parts in $p$ that are equal to $i$.
Example
p1 = new Partition from {3,2,1}
cardinalityOfConjugacyClass p1
p2 = new Partition from {1,1,1,1,1}
cardinalityOfConjugacyClass p2
Node
Key
matrixRepresentation
(matrixRepresentation, List, TableauList)
(matrixRepresentation, List, Partition)
(matrixRepresentation,TableauList)
(matrixRepresentation,Partition)
Headline
the matrix representation of a permutation in the Specht Module
Usage
matrixRepresentation(perm,standard)
matrixRepresentation(perm,parti)
matrixRepresentation(standard)
matrixRepresentation(parti)
Inputs
perm:List
a permutation
standard:TableauList
a list of standard tableaux of a given partition
parti:Partition
a partition
Outputs
:Matrix
the matrix representation of the given permutation in the Specht module index by the given partition
:HashTable
if no permutation is given then it calculates the representation for all the permutations in S_n
Description
Text
The matrix representation for a permutation is calculated by studying the action of the permutation
on the basis of standard polytabloids.
The permuted polytabloids are then written as a linear combination of standard polytabloids using the
straightening algorithm.
Example
p = new Partition from {2,1}
l = {0,2,1}
matrixRepresentation (l,p)
stan = standardTableaux p
matrixRepresentation (l,stan)
matrixRepresentation stan
Node
Key
permutePolynomial
(permutePolynomial, List, RingElement)
(permutePolynomial, List, Product)
(permutePolynomial, List, Sum)
(permutePolynomial, List, Power)
(permutePolynomial, List, Minus)
Headline
permutes a RingElement or a PolynomialExpression of RingElements
Usage
permutePolynomial(perm,f)
permutePolynomial(perm,prod)
permutePolynomial(perm,s)
permutePolynomial(perm,pow)
permutePolynomial(perm,minu)
Inputs
f:RingElement
a ring element
prod:Product
a Product expression
s:Sum
a sum expression
pow:Power
a power expression
minu:Minus
a minus expression
perm:
a permutation
Outputs
:RingElement
the result of applying perm to f
:Expression
the result of applying f to the given expression
Description
Text
This method applies permutations to polynomial ring elements by permuting the variables.
Therefore the size of the permutation must be equal to the number of generators of the ring of the elements.
Example
R = QQ[x_0..x_4]
l = {1,0,2,3,4}
f = x_1*x_2*x_3
permutePolynomial(l,f)
Text
This method can also permute polynomial expressions that are constructed from ring elements
either by sums, products or powers.
Example
ex = factor(x_1*x_2*x_3)+factor(x_1*x_3*x_4)
permutePolynomial(l,ex)
Node
Key
vandermondeDeterminant
(vandermondeDeterminant, List,PolynomialRing)
Headline
the vandermonde determinant for a set of generators of a ring
Usage
vandermondeDeterminant(l,R)
Inputs
R:PolynomialRing
l:List
a subset of the indices of the generators of R
AsExpression=>Boolean
a Boolean value, default value is false. If true it returns the determinant as a product expression
This is a particularly useful way to reduce the size of the object since a Vandermonde determinant
has n! terms but only n*(n-1)/2 factors.
Outputs
:RingElement
the determinant of the Vandermonde matrix formed by the generators indexed by l.
Description
Text
A Vandermonde matrix is a matrix of $n$ elements is constructed by putting in each column
all the powers from 0 to $n-1$ of each of the elements.
If $x_i$ are the elements used to construct the matrix then it can be proven that the determinant
has the following form.
$\prod_{0 \leq i < j < n} (x_j-x_i) $
Example
R = QQ[x_0..x_3]
vandermondeDeterminant({0,2,3},R)
factor oo
Node
Key
AsExpression
[vandermondeDeterminant, AsExpression]
[schurPolynomial,AsExpression]
[spechtPolynomial,AsExpression]
[spechtPolynomials,AsExpression]
[higherSpechtPolynomial,AsExpression]
[higherSpechtPolynomials,AsExpression]
[secondaryInvariants,AsExpression]
Headline
an optional argument that returns polynomials as expressions
Description
Text
The optional argument AsExpression specifies whether the polynomials
should be outputted as RingElement objects or as elements of type Expression
Example
R = QQ[x_0..x_3]
vandermondeDeterminant({0,2,3},R,AsExpression => true)
Text
This allows to visualize some of the polynomials in a clearer way.
Example
p = new Partition from {2,2}
S = youngTableau(p,{0,2,1,3})
T = youngTableau(p,{0,1,2,3})
higherSpechtPolynomial(S,T,R,AsExpression => true)
higherSpechtPolynomials(R,AsExpression => true)
Text
In some cases it also allows to work with polynomials whose term expansion
is very big.
Example
R = QQ[x_1..x_10]
p = new Partition from {1,1,1,1,1,1,1,1,1,1};
spechtPolynomial(youngTableau(p,{0,1,2,3,4,5,6,7,8,9}),R,AsExpression => true)
SeeAlso
higherSpechtPolynomial
Node
Key
Robust
[higherSpechtPolynomial,Robust]
[higherSpechtPolynomials,Robust]
[secondaryInvariants,Robust]
Headline
an optional argument for specifying the algorithm for calculating higherSpechtPolynomials
Description
Text
This optional argument decides between two ways to calculate higherSpechtPolynomials.
If it is set to true then a calculation involving the row and column stabilizers
is used.
If it is set to false then another strategy is used. This strategy is based on a
representation of higher Specht polynomials as a multiplication
of simpler Specht polynomials and Schur polynomials.
Example
R = QQ[x_1..x_4]
p = new Partition from {2,2}
S = youngTableau(p,{0,2,1,3})
T = youngTableau(p,{0,1,2,3})
higherSpechtPolynomial(S,T,R,Robust => true)
higherSpechtPolynomial(S,T,R,Robust => false)
Text
This option is used mainly to check that the alternative algorithm proposed
was correct.
SeeAlso
higherSpechtPolynomial
Node
Key
(spechtPolynomial,YoungTableau, PolynomialRing)
spechtPolynomial
Headline
the Specht polynomial indexed by a standard tableau
Usage
spechtPolynomial(y,R)
Inputs
y:YoungTableau
R:PolynomialRing
Outputs
:RingElement
the Specht polynomial
Description
Text
Specht polynomials were the original objects that gave rise to the Specht modules.
The Specht polynomial of a tableau $T$ is product of the Vandermonde determinant of the variables
index by the columns of the tableau.
Example
R = QQ[x_0..x_4]
p = new Partition from {2,2,1}
y = youngTableau(p,{0,3,1,4,2})
spechtPolynomial(y,R)
factor oo
Node
Key
(spechtPolynomials,Partition, PolynomialRing)
spechtPolynomials
Headline
the set of all Specht polynomial indexed by standard tableaux of shape p
Usage
spechtPolynomials(p,R)
Inputs
p:Partition
R:PolynomialRing
Outputs
:HashTable
a hash table with the polynomials index by the filling of their respective tableaux
Description
Text
The set of all the Specht polynomials for standard tableaux of a given shape p forms a basis for a module which is isomorphic to
the Specht module indexed by p.
Example
R = QQ[x_0..x_4]
p = new Partition from {2,2,1}
specht = spechtPolynomials(p,R)
Node
Key
(indexMonomial,YoungTableau, YoungTableau,PolynomialRing)
indexMonomial
Headline
a monomial that represents an index tableau
Usage
indexMonomial(S,T,R)
Inputs
S:YoungTableau
T:YoungTableau
R:PolynomialRing
Outputs
:RingElement
Description
Text
The index monomial is used in the construction of higher Specht polynomials.
To calculate the index monomial first the index tableau of $S$, $i(S)$ is calculated.
Then the monomial is calculated as $x_T^{i(S)}$. This is a monomial with the variables as they appear in T
with the exponents that appear in $i(S)$.
Example
R = QQ[x_0..x_4]
p = new Partition from {2,2,1}
S = youngTableau(p,{0,2,1,3,4})
T = youngTableau(p,{0,1,2,3,4})
ind = indexTableau(S)
indexMonomial(S,T,R)
SeeAlso
indexTableau
Node
Key
(permutationMatrix,List)
permutationMatrix
Headline
a permutation matrix generator
Usage
permutationMatrix (permutation)
Inputs
permutation:List
a list of numbers from 0..n-1 that represents a permutation
Outputs
:Matrix
the matrix that represents the given permutation
Description
Example
permutationMatrix {0,1,2}
permutationMatrix {1,0,2}
permutationMatrix {1,2,0}
Node
Key
(higherSpechtPolynomial,YoungTableau, YoungTableau,PolynomialRing)
higherSpechtPolynomial
Headline
the higher Specht polynomial index by the pair of standard tableaux (S,T)
Usage
higherSpechtPolynomial(S,T,R)
Inputs
S:YoungTableau
T:YoungTableau
R:PolynomialRing
Outputs
:RingElement
the higher Specht polynomial
Description
Text
Higher Specht polynomials are a family of polynomials that form a basis of the coinvariant algebra for the symmetric group.
The coinvariant algebra is isomorphic as a $S_n$ module to the regular representation of $S_n$. Therefore
every Specht modules appears as an irreducible module in this algebra with multiplicity $f^\lambda= {\rm dim} \, S^\lambda $.
Higher Specht polynomials decompose this algebra into its irreducible submodules.
Higher Specht polynomials are indexed by pairs of standard tableaux of the same size.
The usual construction of these polynomials is as follows.
1. Given two tableaux (S,T) of shape $\lambda$ the index tableau i(S) is calculated and the index monomial $x_T^{i(S)}$ is calculated.
2. The Young symmetrizer $\sum_{\tau \in C(T)} \sum_{R(T)} sgn(\tau)\sigma$ is applied to the index monomial.
The algorithm based on this construction can be used in this method with the optional input
Robust => true
A second algorithm for this polynomials is based on a study on the structure of this polynomials.
The outline of this construction is as follow.
1. Calculate the index tableau $i(S)$.
2. Calculate all row permutations of $i(S)$ such that no entries in the same column are equal.
3. For each different tableau $\sigma(i(S))$ in the previous step order the columns in descending order making sure to calculate the sign of the permutation used.
4. For each column in $\sigma(i(S))$ determine the Schur polynomial with partition $\lambda = (a_p-p, \ldots,a_i-i ,\ldots ,a_0) $.
5. For all columns multiply the polynomials obtained in Step 4. Multiply this by the sign obtained in Step 3.
6. For all tableaux $\sigma(i(S))$, add all polynomials obtained in Step 5.
7. Multiply the polynomial in Step 6 by the Specht polynomial of T.
Example
R = QQ[x_0..x_4]
p = new Partition from {2,2,1}
S = youngTableau(p,{0,2,1,3,4})
T = youngTableau(p,{0,1,2,3,4})
time higherSpechtPolynomial(S,T,R)
time higherSpechtPolynomial(S,T,R, Robust => false)
time higherSpechtPolynomial(S,T,R, Robust => false, AsExpression => true)
SeeAlso
spechtPolynomial
indexMonomial
columnStabilizer
rowStabilizer
rowPermutationTableaux
Node
Key
higherSpechtPolynomials
(higherSpechtPolynomials,YoungTableau,PolynomialRing)
(higherSpechtPolynomials,YoungTableau,TableauList,PolynomialRing)
(higherSpechtPolynomials,Partition,PolynomialRing)
(higherSpechtPolynomials,PolynomialRing)
Headline
a method that gives sets of higher Specht polynomials
Usage
higherSpechtPolynomial(S,R)
higherSpechtPolynomial(S,standard,R)
higherSpechtPolynomial(p,R)
higherSpechtPolynomial(R)
Inputs
S:YoungTableau
R:PolynomialRing
standard:TableauList
The list of standard tableaux of the same shape as S
p:Partition
Outputs
:HashTable
a hash table with multiple levels depending on the input
Description
Text
This methods returns higher Specht polynomials sorted in hash tables depending on the input received.
If the input is just a YoungTableau $S$ of shape $\lambda$ and a PolynomialRing then it calculates the
standard tableaux $ST(\lambda)$ and then stores all polynomials $F_T^S$ such that $T \in ST(\lambda)$.
The polynomials are stored in a hash table with the filling of $T$ as the key.
The list $ST(\lambda)$ can be provided as an input. This is used to avoid repeating this calculation
when this method is called multiple times with the same shape $\lambda$.
This set forms a basis for one of the copies of the Specht module $S^\lambda$.
Example
R = QQ[x_0..x_3]
p = new Partition from {2,2}
S = youngTableau(p,{0,2,1,3})
higherSpechtPolynomials(S,R)
stan = standardTableaux p
higherSpechtPolynomials(S, stan,R)
Text
If only a partition $\lambda$ and a polynomial ring is given then the method calculates $ST(\lambda)$.
Then it calculates all polynomials $F_T^S$ such that $S,T \in ST(\lambda)$.
This is a basis for the isotypical component $X_\lambda$ in the coinvariant algebra of the symmetric group.
The polynomials are stored by calling for each $S \in ST(\lambda) $ the previous method. The output is stored
in another hash table with the key being the filling of the tableau $S$.
Example
higherSpechtPolynomials(p,R)
Text
Finally if just a polynomial ring $R$ with $n$ elements is provided then the method calculates all higher Specht polynomials
for all partitions $\lambda$ of $n$.
The polynomials are calculated by calling the previous method for every partition of $n$ and storing the values in
a new hash table with the key being the partition.
Example
higherSpechtPolynomials(R)
Node
Key
(generalizedVandermondeMatrix,List,List,PolynomialRing)
generalizedVandermondeMatrix
Headline
the method for calculating generalized Vandermonde matrices
Usage
generalizedVandermondeMatrix(indices,exponents,R)
Inputs
indices:List
a list of the variables that appear in each column of the matrix
exponents:List
a list of the powers that appear in each row of the matrix
R:PolynomialRing
Outputs
:Matrix
Description
Text
Generalized vandermonde matrices allow the power in the rows to be different from the numbers
from 0 to n-1.
Example
R = QQ[x_0..x_4]
M = generalizedVandermondeMatrix({0,2,3},{1,3,5},R)
Text
The determinant of these matrices divided by the Vandermonde determinant of the same rank is equal
to a Schur polynomial .
Example
(determinant M)//vandermondeDeterminant({0,2,3},R)
Node
Key
(schurPolynomial,List,Partition,PolynomialRing)
schurPolynomial
Headline
a method for constructing Schur polynomials
Usage
schurPolynomial(indices,parti,R)
Inputs
indices:List
a list of the variables that appear in each column of the matrix
parti:Partition
a partition that indexes the Schur polynomial
R:PolynomialRing
Outputs
:Matrix
Description
Text
Generalized vandermonde matrices allow the power in the rows to be different from the numbers
from 0 to n-1.
Example
R = QQ[x_0..x_4]
M = generalizedVandermondeMatrix({0,2,3},{1,3,5},R)
Text
The determinant of these matrices divided by the Vandermonde determinant of the same rank is equal
to a Schur polynomial .
Example
(determinant M)//vandermondeDeterminant({0,2,3},R)
Node
Key
(generatePermutationGroup,List)
generatePermutationGroup
Headline
a method for generating a permutation group given a set of generators
Usage
generatePermutationGroup(gens)
Inputs
gens:List
a list of permutations
Outputs
:List
the group generated by the given set of generators
Description
Text
The method works by taking all multiplications of the elements in the set of generators. New elements
that are found are added and the process is repeated until no new elements are found.
Example
generatePermutationGroup {{1,0,2,3},{1,2,3,0}}
Text
This method is used to calculate the size of each conjugacy classes for the groups.
Node
Key
representationMultiplicity
(representationMultiplicity,Tally,Partition,CharacterTable)
(representationMultiplicity,Tally,Partition)
Headline
the number of secondary invariants in a given irreducible representation
Usage
representationMultiplicity(tal,p,charTable)
representationMultiplicity(tal,p)
Inputs
tal:Tally
a tally with the number of elements in each conjugacy class of the group
p:Partition
a partition that indexes an irreducible representation
charTable:CharacterTable
optionally the character table of S_n. If it is not provided then it is calculated by the method
Outputs
:ZZ
the multiplicity of the trivial representation of the group described by tal in the irreducible representation of S_n indexed by p
Description
Text
Since the given group $H$ is a subgroup of $S_n$, the restrictions of the Specht modules to $H$
are also $H$-modules. The number of copies of the trivial representation of $H$ in each of these modules
can be found by the formula for the inner product for characters applied to the characters of the previous modules.
$\frac{1}{|H|}\sum_{C \in Cl(H)} |C|X_\lambda(\sigma_c)$
$Cl(H)$ is the set of conjugacy classes of $H$, $|C|$ is the size of the conjugacy class and $\sigma_c$ is a representative
of the conjugacy class $C$ and $X$ is the character of the representation.
Therefore it is necessary to calculate the cardinality of each conjugacy class. This is done by checking the conjugacy class of each element
in the group. For the following example a subgroup of $S_6$ isomorphic to $S_4$ is taken.
Example
genList = {{1,2,3,0,5,4},{0,4,2,5,1,3}}
H = generatePermutationGroup(genList)
Text
For the given group a tally with the size of each conjugacy class must be provided. This tally
is inputted to the representationMultiplicityMethod
Example
tal := tally apply (H,h->conjugacyClass h);
Text
The number of secondary invariants is equal to the index of the group $[S_6:H] = 30$.
We check that this is true by calculating the number of trivial representations of $H$ in each
irreducible representation of $S_6$. We take into account that there are multiple copies of each
representation by multiplying the values with the number of copies which is given by the hookLengthFormula.
Example
partis = partitions 6;
time multi = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p))
sum (partis, p -> multi#p * hookLengthFormula p)
Text
The submodules where the multiplicity is zero will not be taken into account when applying the secondaryInvariants
algorithm.
The character table can be inputted to the method as well. This is made to avoid calculating the same character table for every partition of $n$.
Example
charTable = characterTable 6
time multi2 = hashTable apply (partis, p-> p=> representationMultiplicity(tal,p,charTable))
SeeAlso
generatePermutationGroup
conjugacyClass
Node
Key
(secondaryInvariants,List,PolynomialRing)
secondaryInvariants
Headline
the set of secondaryInvariants of a permutation group
Usage
secondaryInvariants(gens,R)
Inputs
gens:List
a list of generators of a permutation group H
R:PolynomialRing
a polynomial ring
Outputs
:HashTable
the set of secondary invariants indexed by the representation in which they are found
Description
Text
Let $R$ be a polynomial ring with $n$ generators. The secondary invariants of a group $H$ in $GL(n)$ are the set of generators of the ring of invariants $R^H$
as a $K[\theta_1,\ldots,\theta_n]$-module. For this algorithm we always take the primary invariants
$\theta_1,\ldots,\theta_n$ to be the elementary symmetric polynomials $e_1,\ldots e_n$ so that
the ring $K[\theta_1,\ldots,\theta_n]$ is the ring of symmetric polynomials.
The secondary invariants are obtained by considering the quotient ring $R/(e_1,\ldots,e_n)$.
This quotient ring is called the coinvariant algebra of $S_n$. This quotient is isomorphic to the regular representation of $S_n$. In particular as
a K-vector space it is finite dimensional.
In this space we find the subspace that is invariant under the action of $H$. The secondary invariants
correspond to a basis for this space.
The advantage of this algorithm is that it decomposes the regular representation into its
irreducible representation by means of the higher Specht polynomials basis. This reduces
significantly the dimension of the vector spaces in which the invariant spaces must be found.
To illustrate we calculate the secondary invariants for a subgroup of cardinality 24 in $S_6$.
Example
R = QQ[x_1..x_6]
genList = {{1,2,3,0,5,4},{0,4,2,5,1,3}}
time seco = secondaryInvariants(genList,R);
seco#(new Partition from {2,2,2})
Node
Key
(powerSumSymmetricPolynomials,PolynomialRing)
powerSumSymmetricPolynomials
Headline
the power sum symmetric polynomials
Usage
powerSumSymmetricPolynomials(R)
Inputs
R:PolynomialRing
a polynomial ring
Outputs
:List
the list of power sum symmetric polynomials
Description
Text
As an example the power sum symmetric polynomials of a ring with three variables
are calculated. These polynomials form a basis for the ring of symmetric polynomials.
Example
R = QQ[x_1..x_3]
powerSumSymmetricPolynomials R
SeeAlso
elementarySymmetricPolynomials
Node
Key
(elementarySymmetricPolynomials,PolynomialRing)
elementarySymmetricPolynomials
Headline
the elementary symmetric polynomials
Usage
elementarySymmetricPolynomials(R)
Inputs
R:PolynomialRing
a polynomial ring
Outputs
:List
the list of power elementary symmetric polynomials
Description
Text
As an example the elementary symmetric polynomials of a ring with three variables
are calculated. These polynomials form a basis for the ring of symmetric polynomials.
Example
R = QQ[x_1..x_3]
elementarySymmetricPolynomials R
SeeAlso
powerSumSymmetricPolynomials
///
-*
Tests that the representationMultiplicity correctly founds the number of secondary invariants in
each irreducible representation
The test is made for H1 = D_4 subset of S_4 and H2 = S_5 as a subset of S_10.
*-
TEST ///
testMultiplicity = method()
testMultiplicity List := (listGens) -> (
n := #listGens#0;
p:= partitions n;
total:= 0;
charTable := characterTable n;
group:=generatePermutationGroup(listGens);
for i to #p-1 do(
tal := tally apply (group, g-> conjugacyClass g);
multiplicity:= representationMultiplicity(tal,p#i,charTable);
total = total + multiplicity*hookLengthFormula(p#i);
);
total == n!/#group
)
listGens = {{0,3,2,1},{1,2,3,0}};
assert testMultiplicity(listGens);
listGens2 = {{5,1,8,3,4,0,7,6,2,9},{4,0,1,2,3,7,8,9,5,6}};
assert testMultiplicity(listGens2);
///
-*
Test that the output of the straightening algorithm correctly represents the same polynomial as the input.
It is done for the Modules index by partitions {3,2} and {2,2,2}, and for all permutations of S_5 and S_6.
*-
TEST ///
testStraighteningAlgorithm = method()
testStraighteningAlgorithm(List,TableauList,PolynomialRing):= (perm,standard,R)-> (
for i to standard#length-1 do (
perm2 := perm_(flatten entries standard#matrix^{i});
polynomial := spechtPolynomial(youngTableau(standard#partition,perm2),R);
y:= youngTableau(standard#partition,perm2);
lineal := straighteningAlgorithm y;
ini := 0;
suma:=0_R;
for term in terms lineal do (
suma = suma + term#1* (spechtPolynomial(term#0,R));
);
assert (suma === polynomial)
)
)
p = new Partition from {3,2};
standard = standardTableaux p;
R := QQ[x_0..x_4];
perms = permutations 5;
for perm in perms do testStraighteningAlgorithm(perm,standard,R);
p = new Partition from {2,2,2};
standard = standardTableaux p;
R:= QQ[x_0..x_5];
perms = permutations 6;
for perm in perms do testStraighteningAlgorithm(perm,standard,R);
///
-*
Test whether the algorithm proposed for calculating higher Specht polynomials coincides with the
standard method that is closest to the definition of higher Specht polynomials. It also checks whether the outputs
as expressions coincide with the normal outputs of this method
*-
TEST ///
n:=6;
R := QQ[x_1..x_n];
specht0 := higherSpechtPolynomials(R,Robust=> true, AsExpression => false);
specht1 := higherSpechtPolynomials(R,Robust=>true, AsExpression => true);
specht2 := higherSpechtPolynomials(R,Robust=>false, AsExpression => false);
specht3 := higherSpechtPolynomials(R,Robust=>false, AsExpression => true);
for p in keys specht0 do (
for S in keys (specht0#p) do (
for T in keys(specht0#p#S) do (
assert (specht0#p#S#T == value specht1#p#S#T);
assert (specht0#p#S#T == specht2#p#S#T);
assert (specht0#p#S#T == value specht3#p#S#T);
);
);
);
///
-*
Tests that the rows in the character table are
orthogonal with respect to the inner product of characters.
*-
TEST ///
for n from 1 to 10 do (
charTable := characterTable n;
for i to charTable#length-1 do (
assert ( innerProduct(n,(charTable#values)^{i},(charTable#values)^{i})== 1 );
for j to i-1 do (
assert (innerProduct(n,(charTable#values)^{i},(charTable#values)^{j}) == 0);
);
);
);
///
-*
Test that the secondary invariants are effectively invariant under the action of the given ring.
*-
TEST ///
testInvariance = method()
testInvariance (List,HashTable):= (lista,hashTab)-> (
for k in values (hashTab) do (
assert testInvariance(lista,k);
);
true
)
testInvariance (List,RingElement):= (gens,s) -> (
for g in gens do (
assert (permutePolynomial(g,s) == s);
);
true
)
testInvariance (List,List):= (gens,l) -> (
assert (#l == 0);
true
)
listGens = {{0,3,2,1},{1,2,3,0}};
R = QQ[x_0..x_3];
testInvariance(listGens,secondaryInvariants(listGens,R));
R = QQ[x_1..x_6];
listGens = {{1,2,3,0,5,4},{0,4,2,5,1,3}}
testInvariance(listGens,secondaryInvariants(listGens,R));
///
end
|