1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
--- status: Draft
--- author(s): MES
--- notes:
doc ///
Node
Key
Hom
(Hom, Ring, Ring)
(Hom, Ring, Ideal)
(Hom, Ring, Module)
(Hom, Ideal, Ring)
(Hom, Ideal, Ideal)
(Hom, Ideal, Module)
(Hom, Module, Ring)
(Hom, Module, Ideal)
(Hom, Module, Module)
[Hom, DegreeLimit]
[Hom, MinimalGenerators]
[Hom, Strategy]
Headline
module of homomorphisms
Usage
Hom(M, N)
Inputs
M:{Ring,Ideal,Module}
N:{Ring,Ideal,Module}
DegreeLimit => {ZZ,List}
if set, stop after homomorphisms in this degree have been computed
MinimalGenerators => Boolean
whether to @TO trim@ the resulting module
Strategy => Thing
Outputs
:Module
isomorphic to $\mathrm{Hom}_R(M,N), where $M$ and $N$ are both $R$-modules
Description
Text
If $M$ or $N$ is an ideal or ring, it is regarded as a module in the evident way.
Example
R = QQ[x,y]/(y^2 - x^3);
M = image matrix{{x, y}}
H = Hom(M, M, MinimalGenerators => true)
Text
To recover the modules used to create a Hom-module, use the function @TO formation@.
Example
formation H
Text
Specific homomorphisms may be obtained using @TO homomorphism@, as follows.
Example
f0 = homomorphism H_{0}
f1 = homomorphism H_{1}
Text
In the example above, @TT "f0"@ is the identity map, and @TT "f1"@ maps $x$ to $y$ and $y$ to $x^2$.
Example
M_0, M_1
f0 M_0, f0 M_1
f1 M_0, f1 M_1
Contributors
Devlin Mallory implemented the strategy which accepts a degree limit.
SeeAlso
Ext
formation
Subnodes
adjoint
compose
homomorphism
homomorphism'
(Hom, Module, Matrix)
"OldChainComplexes :: Hom(Module,ChainComplex)"
Node
Key
(Hom, Module, Matrix)
(Hom, Matrix, Module)
(Hom, Matrix, Matrix)
Headline
induced map on Hom
Synopsis
Usage
Hom(f,g)
Inputs
f:Matrix
g:Matrix
DegreeLimit => {ZZ,List}
see @TO [Hom, DegreeLimit]@
MinimalGenerators => Boolean
see @TO [Hom, MinimalGenerators]@
Strategy => Thing
see @TO [Hom, Strategy]@
Outputs
:Matrix
the map on Hom induced by the maps $f$ and $g$
Synopsis
Usage
Hom(f,M)
Hom(M,f)
Inputs
f:Matrix
M:Module
DegreeLimit => {ZZ,List}
see @TO [Hom, DegreeLimit]@
MinimalGenerators => Boolean
see @TO [Hom, MinimalGenerators]@
Strategy => Thing
see @TO [Hom, Strategy]@
Outputs
:Matrix
the map on Hom induced by the map $f$
Description
Example
R = QQ[x]
f = vars R
M = image f
g = Hom(f,M)
target g
source g
Example
R = QQ[x]
f = vars R
M = image f
g = Hom(M,f)
target g
source g
SeeAlso
inducedMap
///
-----------------------------------------------------------------------------
doc ///
Node
Key
End
[End, DegreeLimit]
[End, MinimalGenerators]
[End, Strategy]
Headline
module of endomorphisms
Usage
End M
Inputs
M:{Ring,Ideal,Module}
DegreeLimit => {ZZ,List}
see @TO [Hom, DegreeLimit]@
MinimalGenerators => Boolean
see @TO [Hom, MinimalGenerators]@
Strategy => Thing
see @TO [Hom, Strategy]@
Description
Text
Constructs the module of endomorphisms of $M$.
Example
R = QQ[a,b,c];
M = coker koszul_2 vars R
End M
SourceCode
End
///
-----------------------------------------------------------------------------
doc ///
Node
Key
reshape
(reshape, Module, Module, Matrix)
Headline
reshape a matrix
Usage
reshape(F, G, f)
Inputs
F:Module -- a free module
G:Module -- a free module
f:Matrix
Outputs
:Matrix
@TT "F <-- G"@ obtained from @TT "f"@ by taking elements from the first column of @TT "f"@,
then the second, and so on, filling them into the result column by column.
Description
Text
Currently, it is assumed that @TT "f"@ and the result both have the same number of entries.
The resulting map has the same degree that @TT "f"@ has, but it is easy to spoil homogeneity
by giving incorrect free modules.
Example
f = matrix{{1,3,5,7,9,11},{2,4,6,8,10,12}}
reshape(ZZ^3,ZZ^4,f)
///
-----------------------------------------------------------------------------
undocumented {
[adjoint, Strategy],
[adjoint, DegreeLimit],
[adjoint, MinimalGenerators],
}
doc ///
Node
Key
adjoint
(adjoint, Matrix, Module, Module)
adjoint'
(adjoint', Matrix, Module, Module)
Headline
the tensor-Hom adjunction maps
Description
Text
Recall that @TO (tensor, Module, Module)@ and @TO (Hom, Module, Module)@ form an adjoint pair,
meaning that there is a natural isomorphism
$$ \mathrm{Hom}(F\otimes G,H) \cong \mathrm{Hom}(F,\mathrm{Hom}(G,H)). $$
Synopsis
Usage
adjoint(f, F, G)
Inputs
f:Matrix
a homomorphism $F \otimes G \to H$
F:Module -- a free module
G:Module -- a free module
Outputs
:Matrix
the adjoint homomorphism $F \to \mathrm{Hom}(G,H)$
Description
Example
R = QQ[x_1 .. x_24];
f = genericMatrix(R, 2, 4*3)
isHomogeneous f
g = adjoint(f, R^4, R^3)
Text
If @TT "f"@ is homogeneous, and @TT "source f === F ** G"@ (including the grading),
then the resulting matrix will be homogeneous.
Example
g = adjoint(f, R^4, R^{-1,-1,-1})
isHomogeneous g
f === adjoint'(g, R^{-1,-1,-1}, R^2)
Synopsis
Usage
adjoint'(g, G, H)
Inputs
g:Matrix
a homomorphism $F \to \mathrm{Hom}(G,H)$ between modules
G:Module -- a free module
H:Module -- a free module
Outputs
:Matrix
the adjoint homomorphism $F \otimes G \to H$
Description
Text
If @TT "g"@ is homogeneous, and @TT "target g === Hom(G,H)"@ (including the grading),
then the resulting matrix will be homogeneous.
Example
R = QQ[x_1 .. x_12];
g = genericMatrix(R, 6, 2)
f = adjoint'(g, R^2, R^3)
isHomogeneous f
g === adjoint(f, R^{-1,-1}, R^2)
SeeAlso
dual
flip
compose
reshape
(Hom, Module, Module)
(tensor, Module, Module)
///
-----------------------------------------------------------------------------
undocumented {
[(dual, Matrix), Strategy],
[(dual, Matrix), DegreeLimit],
[(dual, Matrix), MinimalGenerators],
}
document {
Key => dual,
Headline => "dual module or map",
}
document {
Key => (dual, Module),
Headline => "dual module",
TT "dual M", " -- the dual of a module."
}
document {
Key => (dual, Matrix),
Headline => "dual of a map",
TT "dual f", " -- the dual (transpose) of a homomorphism."
}
-----------------------------------------------------------------------------
doc ///
Node
Key
homomorphism
(homomorphism, Vector)
(homomorphism, Matrix)
Headline
get the homomorphism from element of Hom
Usage
homomorphism f
Inputs
f:{Vector,Matrix}
corresponding to an element in $\mathrm{Hom}(M,N)$ or a map $R^1 \to \mathrm{Hom}(M,N)$
Outputs
:Matrix
the map $M \to N$, corresponding to the element $f \in \mathrm{Hom}(M,N)$
Description
Text
When @TT "H = Hom(M,N)"@ is computed, information about computing the morphisms
corresponding to its elements is stored in @TT "H"@.
Example
R = QQ[x,y,z, Degrees => {2,3,1}]/(y^2 - x^3)
H = Hom(ideal(x,y), R^1)
f = H_{1}
g = homomorphism f
Text
The source and target are what they should be.
Example
source g === module ideal(x,y)
target g === R^1
Text
Except for a possible redistribution of degrees between the map and modules,
we can undo the process with @TO "homomorphism'"@.
Example
f' = homomorphism' g
f === f'
f - f'
degree f, degree f'
degrees f, degrees f'
Text
After @TO2((minimalPresentation, Module), "pruning")@ a Hom module,
one cannot use homomorphism directly. Instead, first apply the pruning map:
Example
H1 = prune H
homomorphism(H1.cache.pruningMap * H1_{1})
SeeAlso
Hom
homomorphism'
Node
Key
homomorphism'
(homomorphism', Matrix)
[homomorphism', DegreeLimit]
[homomorphism', MinimalGenerators]
[homomorphism', Strategy]
Headline
get the element of Hom from a homomorphism
Usage
homomorphism' f
Inputs
f:Matrix
of the form $M \to N$
DegreeLimit => {ZZ,List}
see @TO [Hom, DegreeLimit]@
MinimalGenerators => Boolean
see @TO [Hom, MinimalGenerators]@
Strategy => Thing
see @TO [Hom, Strategy]@
Outputs
:Matrix
the map $R^1 \to \mathrm{Hom}(M,N)$, corresponding to the map $f \in \mathrm{Hom}(M,N)$
Description
Example
R = QQ[x,y,z]
f = vars R ++ vars R
g = homomorphism' f
target g === Hom(source f, target f)
Text
We can undo the process with @TO homomorphism@.
Example
f' = homomorphism g
f === f'
SourceCode
(homomorphism', Matrix)
SeeAlso
Hom
homomorphism
adjoint
///
-----------------------------------------------------------------------------
doc ///
Node
Key
compose
(compose, Module, Module, Module)
[(compose, Module, Module, Module), DegreeLimit]
[(compose, Module, Module, Module), MinimalGenerators]
[(compose, Module, Module, Module), Strategy]
Headline
composition as a pairing on Hom-modules
Usage
compose(M, N, P)
Inputs
M:Module
N:Module
P:Module
-- DegreeLimit => {ZZ,List}
-- see @TO [Hom, DegreeLimit]@
-- MinimalGenerators => Boolean
-- see @TO [Hom, MinimalGenerators]@
-- Strategy => Thing
-- see @TO [Hom, Strategy]@
Outputs
:Matrix
the composition map of homomorphism modules $\mathrm{Hom}(M,N)$ and $\mathrm{Hom}(N,P)$
Description
Text
In the following example we check that the map does implement the composition map
$$ \mathrm{Hom}(M,N) \otimes \mathrm{Hom}(N,P) \to \mathrm{Hom}(M,P). $$
Example
R = QQ[x,y]
M = image vars R ++ R^2
f = compose(M,M,M);
H = Hom(M,M);
g = H_{0}
h = homomorphism g
f * (g ** g)
h' = homomorphism oo
h' === h * h
assert oo
Text
The modules should be defined over the same ring.
SeeAlso
Hom
homomorphism
homomorphism'
adjoint
flip
///
|