1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
--- status: DRAFT
--- author(s): MES
--- notes: what should 'ambient Ring' do??
--- what about 'ambient Ideal'? ideal 1_R seems suitable (Mahrud)
document {
Key => ambient,
Headline => "ambient free module of a subquotient, or ambient ring",
"Each module M in Macaulay2 is a quotient, submodule or subquotient of a free
module, called the ambient free module of M.",
PARA{},
"The ambient ring of a quotient ring R/I is the polynomial ring of that it is a
quotient. The ambient ring of a Galois field is the quotient ring that it was
constructed from.",
PARA{},
SeeAlso => {GF,cover,super}
}
document {
Key => {(ambient,Ring),(ambient,PolynomialRing),(ambient,QuotientRing)},
Headline => "ambient polynomial ring",
Usage => "ambient R",
Inputs => {
"R" => {"a polynomial ring or a quotient of a polynomial ring"}
},
Outputs => {
Ring => {"the polynomial ring of which this ring is a quotient"}
},
EXAMPLE {
"A = ZZ[a..d];",
"B = A/(3*a^2-1);",
"C = B/(a*b-3);",
"describe C",
"ambient C"
},
"If R is not a quotient of a polynomial ring, an error is given.",
Caveat => {"If the ring is a ", TO GaloisField, ", then the meaning is
different. See ", TO (ambient,GaloisField), "."},
SeeAlso => {}
}
document {
Key => (ambient,GaloisField),
Headline => "corresponding quotient ring",
Usage => "ambient F",
Inputs => {
"F"
},
Outputs => {
Ring => "a quotient of a polynomial ring over the prime field"
},
"description",
EXAMPLE {
"F = GF(25,Variable=>a)",
"ambient F"
},
SeeAlso => {}
}
document {
Key => (ambient, Module),
Headline => "ambient free module",
Usage => "ambient M",
Inputs => {
"M"
},
Outputs => {
Module => "a free module"
},
"If a module is a submodule or quotient of a free module F, or is a subquotient of F
(that is, a submodule of a quotient of F), then this routine yields the free
module F.",
EXAMPLE {
"R = QQ[x_1 .. x_5]",
"N = image matrix{{x_1,x_2},{x_2,x_3}}",
"ambient N",
"ambient cokernel vars R",
"ambient kernel vars R",
"M = image vars R ++ cokernel vars R",
"ambient M"
},
"This module is always the common target free module of the
generator and relation matrices of M",
EXAMPLE {
"ambient M == target generators M",
"ambient M == target relations M"
},
Caveat => {},
SeeAlso => {"subquotient modules",
(cover,Module),
(super,Module),
(generators,Module),
(relations,Module)}
}
document {
Key => (ambient,Matrix),
Headline => "get the map between the ambient free modules",
Usage => "ambient f",
Inputs => {
"f" => "M --> N, where M is a free module or quotient of a free module F.",
},
Outputs => {
Matrix => "ambient M --> ambient N"
},
EXAMPLE {
"R = QQ[a..d];",
"f = map(image vars R, coker matrix{{a,b},{c,d}}, transpose matrix{{a,b,c,d},{d,c,b,a}})",
"target f",
"source f",
"ambient f"
},
Caveat => {},
SeeAlso => {
-- Mike wanted this: "homomorphisms of modules",
(cover,Module),
(cover,Matrix),
(matrix,Matrix)}
}
|