1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
--- status: draft
--- author(s): Decker, Popescu, Smith
--- notes:
document {
Key => dim,
Headline => "compute the Krull dimension",
Caveat => {"To compute the dimension of a vector space,
one should use ", TO rank, ".",
PARA{},
"Over the integers, the computation effectively
tensors first with the rational numbers, yielding the wrong
answer in some cases."},
SeeAlso => {codim}
}
document {
Key => {(dim,Ring),(dim,FractionField),(dim,GaloisField),(dim,PolynomialRing),(dim,QuotientRing),(dim, InexactField)},
Usage => "dim R",
Inputs => {"R"},
Outputs => {ZZ},
"Computes the Krull dimension of the given ring.",
PARA{},
"The singular locus of a cuspidal plane curve",
EXAMPLE {
"R = QQ[x,y,z]",
"I =ideal(y^2*z-x^3)",
"sing = singularLocus(R/I)",
"dim sing"
},
"The exterior algebra is artinian:",
EXAMPLE {
"R = ZZ/101[a,b,SkewCommutative => true]",
"dim R"
},
"The Weyl algebra in 2 variables:",
EXAMPLE {
"R = ZZ/101[x,dx,y,dy,WeylAlgebra => {x=>dx, y=>dy}];",
"dim R"
},
SeeAlso => {codim, "Varieties::dim(AffineVariety)"}
}
document {
Key => (dim,Module),
Usage => "dim M",
Inputs => {"M"
},
Outputs => {ZZ
},
"Computes the Krull dimension of the module ", TT "M",
EXAMPLE {
"R = ZZ/31991[a,b,c,d]",
"I = monomialCurveIdeal(R,{1,2,3})",
"M = Ext^1(I,R)",
"dim M",
"N = Ext^0(I,R)",
"dim N"
},
"Note that the dimension of the zero module is ", TT "-1", ".",
SeeAlso => {(dim,Ring),(dim,Ideal)}
}
document {
Key => (dim,ProjectiveHilbertPolynomial),
Headline => "the degree of the Hilbert polynomial",
Usage => "dim P",
Inputs => {"P"},
Outputs => {ZZ},
"The command ", TO dim, "is designed so that the result
is the dimension of the projective scheme that
may have been used to produce the given Hilbert polynomial.",
EXAMPLE {
"V = Proj(QQ[x_0..x_5]/(x_0^3+x_5^3))",
"P = hilbertPolynomial V",
"dim P"
},
SeeAlso => {hilbertPolynomial, (degree,ProjectiveHilbertPolynomial), (euler,ProjectiveHilbertPolynomial)}
}
document {
Key => {(dim,Ideal),(dim,MonomialIdeal)},
Usage => "dim I",
Inputs => {"I"},
Outputs => {ZZ},
"Computes the Krull dimension of the base ring of ", TT "I", " mod ", TT "I", ".",
PARA{},
"The ideal of 3x3 commuting matrices:",
EXAMPLE {
"R = ZZ/101[x_(0,0)..x_(2,2),y_(0,0)..y_(2,2)]",
"M = genericMatrix(R,x_(0,0),3,3)",
"N = genericMatrix(R,y_(0,0),3,3)",
"I = ideal flatten(M*N-N*M);",
"dim I"
},
"The dimension of a Stanley-Reisner monomial ideal associated to a simplicial complex.",
PARA{},
"A hollow tetrahedron:",
EXAMPLE {
"needsPackage \"SimplicialComplexes\"",
"R = QQ[a..d]",
"D = simplicialComplex {a*b*c,a*b*d,a*c*d,b*c*d}",
"I = monomialIdeal D",
"facets D",
"dim D",
"dim I"
},
"Note that the dimension of the zero ideal is ", TT "-1", ".",
SeeAlso => {ideal, monomialIdeal, "SimplicialComplexes::SimplicialComplexes"}
}
|