File: generators-doc.m2

package info (click to toggle)
macaulay2 1.25.05%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 172,152 kB
  • sloc: cpp: 107,824; ansic: 16,193; javascript: 4,189; makefile: 3,899; lisp: 702; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (214 lines) | stat: -rw-r--r-- 6,657 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
-- -*- coding: utf-8 -*-
--- status: DRAFT
--- author(s): last edit: MES
--- notes: 

undocumented {
	  (generators, EngineRing),
	  (generators, FractionField),
	  (generators, GaloisField),
	  (generators, PolynomialRing),
	  (generators, QuotientRing),
	  (generators, InexactField)}

document {
     Key => generators,
     Headline => "provide matrix or list of generators",
     Usage => "generators x\ngens x",
     Inputs => { "x",
	  CoefficientRing => {"only used if ", TT "x", " is a ring"}  },
     Outputs => { {"provides the generators of ", TT "x", 
	       " in a convenient form, as a list or a matrix, depending on the type"} },
     PARA{},
     "Produces the generators of a Gröbner basis, a polynomial ring, an ideal,
     a free module, a free group, a submodule given by
     means of generators (or for which generators have been computed),
     or a free monoid.",
     PARA{},
     "Usually the result is a list of generators, but the generators of
     a module or Gröbner basis are provided as the columns in a matrix.  
     The matrix is stored in a module M under M.generators, unless the matrix
     is the identity matrix.",
     PARA{},
     "The symbol ", TT "gens", " is a synonym for ", TT "generators", ".",     
     SeeAlso => {numgens, Monoid, GroebnerBasis, Module, relations, subquotient}
     }

document {
     Key => {generator,(generator,Ideal),(generator,Module)},
     Headline => "provide a single generator",
     Usage => "generator I",
     Inputs => { "I" => {ofClass{Ideal,Module}}},
     Outputs => {{"the single generator of ", TT "I", ", if it has just one"}},
     PARA {"If the number of apparent generators is greater than 1, then ", TO "trim", " will be called."},
     EXAMPLE lines ///
     	  I = ideal (4,6)
	  generator I
	  M = image matrix {{4,6},{0,0}}
	  generator M
     ///,
     SeeAlso => {generators}
     }

document { 
     Key => (generators,GroebnerBasis),
     Headline => "the generator matrix of a Gröbner basis",
     Usage => "generators g\ngens g",
     Inputs => { "g",	  
	  CoefficientRing => "unused option" },
     Outputs => {Matrix => {"whose columns are the generators of the Gröbner basis ", TT "g"}},
     "The following ideal defines a set of 18 points over the complex numbers.  We compute a
     lexicographic Gröbner basis of the ideal.",
     EXAMPLE {
	  "R = QQ[a..d, MonomialOrder=>Lex];",
	  "I = ideal(a^7-b-3, a*b-1, a*c^2-3, b*d-4);",
	  "gens gb I"
	  },
     SeeAlso => {"Gröbner bases"}
     }
document {
     Key => (generators,Module),
     Headline => "the generator matrix of a module",     
     Usage => "generators M\ngens M",
     Inputs => { "M",
	  CoefficientRing => "unused option" 
	  },
     Outputs => {
	  {"the matrix of generators of ", TT "M", "."}
	  },
     "Every module in Macaulay2 has, at least implicitly, a generator matrix and a 
     matrix of relations, both of which are matrices between free modules.  
     This function returns the generator matrix.  The module is generated by (the images of) the
     columns of this matrix.",
     EXAMPLE {
	  "R = GF(8,Variable=>a)",
      	  "f = R_0 ++ R_0^2 ++ R_0^3 ++ R_0^4",
      	  "generators image f",
      	  "generators cokernel f"
	  },
     Caveat => {
	  "This function returns a matrix with the given generators.  This 
	  set of generators may not be minimal, or sorted in any particular 
	  order. Use ", TO (trim,Module), " or ", TO (mingens,Module), " instead."
	  },
     SeeAlso => {(relations,Module)}
     }
document { 
     Key => (generators, Monoid),
     Headline => "list of generators",
     Usage => "generators M\ngens M",
     Inputs => {
	  "M",
	  CoefficientRing => "unused option"
	  },
     Outputs => {
	  List => "of generators"
	  },
     EXAMPLE lines ///
     	  R = QQ[a..d];
	  M = monoid R
	  gens M
	  ///,
     SeeAlso => {monoid}
     }
document {
     Key => {(generators, Ideal),
	  (generators, MonomialIdeal)},
     Headline => "the generator matrix of an ideal",
     Usage => "generators I\ngens I",
     Inputs => {"I",
	  CoefficientRing => "unused option"
	  },
     Outputs => { Matrix => {"the one-row matrix whose entries are the generators of ", TT "I"} },
     "Each ideal in ", EM "Macaulay2", " comes equipped with a one-row
     matrix with the generators of the ideal.
     It is this matrix that is returned.",
     EXAMPLE {
	  "R = ZZ/101[a,b,c];",
      	  "I = ideal(a^2,a*b-2,c^4,a*c-1,a*c-1)",
      	  "generators I"
	  },
     "To obtain a list of generators, rather than a matrix, use",
     EXAMPLE {
	  "first entries generators I"
	  },
     "If you want to remove unnecessary generators, use ", TO trim, ".",
     EXAMPLE {
	  "I = trim I",
	  "gens I"
	  }
     }
document { 
     Key => {(generators,Ring),
	  [generators,CoefficientRing]
	  },
     Headline => "the list of generators of a ring",
     Usage => "generators R\ngens R",
     Inputs => {
	  "R",
	  CoefficientRing => Ring => {"the coefficient ring over which to provide the generators of ", TT "R", ", if different
	       from the most recent one"}
	  },
     Outputs => {
	  List => "of generators"
	  },
     EXAMPLE {
	  "A = QQ[x,y];",
	  "gens A",
	  "kk = toField(QQ[t]/(t^3-t-1));",
	  "B = kk[x,y,z];",
	  "generators B",
	  "generators(B, CoefficientRing => QQ)"
	  }
     }

-*
-- TODO: salvage the examples and tests below
-- this function has been replaced by the CoefficientRing option to "generators"
undocumented {
	  (allGenerators, PolynomialRing),
	  (allGenerators, FractionField),
	  (allGenerators, QuotientRing)}

document { 
     Key => {allGenerators, (allGenerators,Ring)},
     Headline => "list of all generators",
     Usage => "allGenerators R",
     Inputs => {
	  "R" => Ring
	  },
     Outputs => {
	  List => {"of every generator of ", TT "R", " over the prime field or the integers"}
	  },
     "Returns the list of all of the generators, as elements of R.",
     EXAMPLE {
	  "A = GF(9,Variable=>a)",
	  "B = A[r,s,t]",
	  "generators B",
	  "allGenerators B",
	  "C = B[x,y,z]/(x^2-a*x-r)",
	  "generators C",
	  "allGenerators C"
	  },
     "This same order is used when creating ", TO2(RingMap, "ring maps"), " from this ring.
     The following ring map from C --> A[u,v] sends ",
     TT "x|-->0, y|-->u, z|-->v, r|-->0, s-->av+1, t|-->1.",
     EXAMPLE {
	  "D = A[u,v];",
	  "F = map(D, C, {0, u, v,  0, a*v+1, 1})",
	  "F (x+s*y)"
	  },
     SeeAlso => {generators, vars, "substitution and maps between rings"}
     }

TEST ///
A = GF(9,Variable=>a)
B = A[r,s,t]
generators B
allGenerators B
C = B[x,y,z]/(x^2-a*x-r)
generators C
v = allGenerators C
assert (#v == 7)
///
*-