1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
--- status: Rewritten August 2022
--- author(s): Mahrud
--- notes: functions below are all defined in monoids.m2
undocumented {
(monoid, PolynomialRing),
(monoid, FractionField),
(monoid, QuotientRing),
}
doc ///
Node
Key
monoid
(monoid, Array)
(monoid, List)
Headline
make or retrieve a monoid
Usage
monoid[a,b,c,...]
monoid{a,b,c,...}
Inputs
TT "[a,b,c,...]":Array
listing generators of the monoid, as well as optional arguments.
TT "{a,b,c,...}":List
same as above, but equivalent to also passing @TT "Local => true"@.
Variables => List -- see @TO [monoid, Variables]@
VariableBaseName => Symbol -- see @TO [monoid, VariableBaseName]@
Global => Boolean -- see @TO [monoid, Global]@
Local => Boolean -- see @TO [monoid, Local]@
Inverses => Boolean -- see @TO [monoid, Inverses]@
Weights => List -- see @TO [monoid, Weights]@
Degrees => List -- see @TO [monoid, Degrees]@
DegreeMap => Boolean -- see @TO [monoid, DegreeMap]@
DegreeLift => Boolean -- see @TO [monoid, DegreeLift]@
DegreeRank => ZZ -- see @TO [monoid, DegreeRank]@
DegreeGroup => Module -- see @TO [monoid, DegreeGroup]@
Heft => List -- see @TO [monoid, Heft]@
Join => Boolean -- see @TO [monoid, Join]@
Constants => Boolean -- see @TO [monoid, Join]@
MonomialOrder => List -- see @TO [monoid, MonomialOrder]@
MonomialSize => ZZ -- see @TO [monoid, MonomialSize]@
SkewCommutative => Boolean -- see @TO [monoid, SkewCommutative]@
WeylAlgebra => List -- see @TO [monoid, WeylAlgebra]@
Outputs
:Monoid
Description
Text
The function @TO monoid@ is called whenever a polynomial ring is created, see
@TO (symbol SPACE, Ring, Array)@, or when a local polynomial ring is made, see
@TO (symbol SPACE, Ring, List)@. Some of the options provided when making a
monoid don't take effect until the monoid is made into a polynomial ring.
Let's make a free ordered commutative monoid on the variables @TT "a,b,c"@,
with degrees 2, 3, and 4, respectively.
Example
M = monoid[a,b,c, Degrees => {2,3,4}]
degrees M
M_0 * M_1^6
Text
Call @TO use@ to assign the variables their values in the monoid.
Example
monoid[x,y,z]
x
use ooo
x * y^6
Text
The options used when the monoid was created can be recovered with @TO options@.
Example
options M
describe M
toExternalString M
Text
The variables listed may be symbols or indexed variables. The values assigned to
these variables are the corresponding monoid generators. The function
@TO baseName@ may be used to recover the original symbol or indexed variable.
The @TO [monoid, Heft]@ option is used, for instance, by @TO (Ext, Module, Module)@.
Example
R = ZZ[x,y, Degrees => {-1,-2}, Heft => {-1}]
degree \ gens R
transpose vars R
Text
By default, (multi)degrees are concatenated when forming polynomial rings over
polynomial rings, as can be seen by examining the corresponding flattened monoid,
which displays information about all of the variables.
Example
QQ[x][y]
oo.FlatMonoid
QQ[x][y][z]
oo.FlatMonoid
Text
That behavior can be overridden with the @TO [monoid, Join]@ option.
Example
QQ[x][y, Join => false]
oo.FlatMonoid
Subnodes
(monoid, Ring)
FlatMonoid
:Optional arguments
(options, Monoid)
[monoid, Variables] -- and VariableBaseName
[monoid, Local] -- and Global
[monoid, Inverses]
[monoid, Weights]
[monoid, Degrees] -- and DegreeRank, DegreeGroup
[monoid, DegreeMap] -- and DegreeLift
[monoid, Heft]
[monoid, Join]
[monoid, MonomialOrder]
[monoid, MonomialSize]
[monoid, SkewCommutative]
[monoid, WeylAlgebra]
Node
Key
[monoid, Variables]
[monoid, VariableBaseName]
Headline
specify the names of the indeterminates
Usage
monoid[Variables => L]
monoid[Variables => n, VariableBaseName => s]
Description
Text
When given a list or sequence, @TT "Variables => L"@ specifies the variables to
be used as generators of the monoid.
Example
QQ[Variables => vars(0..3)]
QQ[Variables => x_(0,0)..x_(3,3)]
Text
When given a number, @TT "Variables => n"@ specifies number of
@TO2(IndexedVariable, "indexed variables")@ to create with base name provided
by @TT "VariableBaseName => s"@, where @TT "s"@ may be either a symbol or string.
The default base name is @TT "p"@.
Example
QQ[Variables => 2]
QQ[Variables => 3, VariableBaseName => v]
QQ[Variables => 4, VariableBaseName => "e"]
class baseName e_0
class e
Text
This option is also useful when creating a new ring from an existing ring, creating
a tensor product ring, or symmetric algebra.
Example
R = QQ[x, y, Degrees => {1, 2}]
newRing(R, Variables => {a,b})
degrees oo
tensor(R, R, Variables => t_(0,0)..t_(1,1))
degrees oo
symmetricAlgebra(R^3, Variables => s_0..s_2)
SeeAlso
vars
baseName
IndexedVariable
IndexedVariableTable
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, Local]
[monoid, Global]
Headline
specify local or global monomial order
Usage
monoid[x,y,z, Local => P, Global => Q]
Description
Text
The optional argument @TT "Global"@ specifies whether all variables are larger
than 1 in the monomial order. The default value @TT "Global => true"@ means that
rings in Macaulay2 are by default global rings. If set to true, and the option
@TO2([monoid, Inverses], TT "Inverses => true")@ is not specified, an error is
raised if any of the variables are not greater than 1 in the @TO2(MonomialOrder, "monomial ordering")@,
as required by the standard theory of Gröbner bases.
Example
QQ[x,y, Weights => {-1,1}, Global => false]
1 > x
1 < y
leadTerm matrix{{x+x^2, y+y^2}}
Text
The optional argument @TT "Local"@ specifies whether all variables are smaller than
1 in the monomial order. Providing @TT "Local => true"@ induces a local monomial
ordering and in particular implies @TT "Global => false"@. A shortcut for indicating
a local monomial ordering is to use a @TO List@ to provide the variables.
Example
QQ[x,y, Local => true]
1 > x
1 > y
QQ{x,y}
leadTerm matrix{{x+x^2, y+y^2}}
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
"heft vectors"
"monomial orderings"
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, Inverses]
Headline
allow negative exponents in monomials
Usage
monoid[X,Y, Inverses => P]
Description
Text
The optional argument @TT "Inverses"@ specifies whether negative exponents will
be allowed, making the monoid into a group. This option is mainly used by
@TO degreesMonoid@ and @TO degreesRing@ functions to allow negative exponents
in the monomials.
Example
S = QQ[x,y, Inverses => true, MonomialOrder => Lex]
S_{1,-1} + S_{-1,1}
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, Weights]
Headline
specify weights of the variables
Usage
monoid[a,b,c, Weights => {w1, w2, w3}]
Description
Text
This option specifies the weights of the variables in the monoid. The orderings
by these weight vectors is prepended to the list of orderings provided by the
@TO[monoid, MonomialOrder]@ option. The value must be a list integers when the
degree length is one, or a list of lists of integers otherwise.
Example
R = QQ[x,y]
leadTerm matrix {{x+y, x^2+y}}
R = QQ[x,y, Weights => {1,2}]
leadTerm matrix {{x+y, x^2+y}}
R = QQ[x,y, Weights => {1,3}]
leadTerm matrix {{x+y, x^2+y}}
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
leadTerm
[monoid, MonomialOrder]
Node
Key
[monoid, Degrees]
[monoid, DegreeRank]
[monoid, DegreeGroup]
Headline
specify the degrees of the variables
Usage
monoid[x,y,z, Degrees => {d1, d2, d3}]
monoid[x,y,z, DegreeRank => r]
monoid[x,y,z, DegreeGroup => ZZ^2 ++ coker matrix 3]
Description
Text
The @TT "Degrees"@ option specifies the degrees of the variables in the monoid.
If provided, the value must be a list or sequence with as many entries (after
@TO2(splice, "splicing")@ and @TO2(flatten, "flattening")@) as there are variables.
Each degree is an integers or a list of integers. Degrees provided as integers
will be converted into multidegrees of length 1.
Example
QQ[x,y,z, Degrees => {2:1, 2}]
degrees oo
QQ[x,y, Degrees => {{1,0}, {0,1}}]
degrees oo
Text
The @TT "DegreeRank"@ option specifies the degree length of the monoid.
If provided, the value must be an integer. If the @TT "Degrees"@ option is not
provided, the degrees of the variables are determined similar to this example.
Example
QQ[a..f, DegreeRank => 3]
transpose matrix degrees oo
Text
Finally, the @TT "DegreeGroup"@ option specifies the degree group of the monoid.
If provided, the value must be a $\ZZ$-module. If the @TT "Degrees"@ option is not
provided, the degrees of the variables are determined similar to the previous example.
Example
QQ[a..f, DegreeGroup => ZZ^2 ++ coker matrix 3]
degreeGroup oo
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, DegreeLift]
[monoid, DegreeMap]
Headline
specify maps between degree groups
Usage
monoid[x,y, DegreeMap => p, DegreeLift => q]
Description
Text
The @TT "DegreeMap"@ option specifies the degree map, particularly when @TT "Join => false"@
is given. The degree map is a (linear) function from the multidegrees of the
(future) coefficient ring to the multidegrees of the monoid ring (polynomial ring)
made from it with the monoid created here, to be used in determining homogeneity
and in determining degrees in tensor products. The default is the @TO identity@.
If a degree map is provided, it will be used in computing tensor products.
Example
A = QQ[x];
B = A[y,
Join => false,
DegreeMap => x -> 7*x]
B.FlatMonoid
degrees A^{-1,-2}
degrees(A^{-1,-2} ** B)
Text
For certain applications, such as lifting matrices, a degree lift function can
be provided using the @TT "DegreeLift"@ option. The degree lift is a (partial)
inverse of the degree map, giving an error when lifting is not possible. If the
degree map is the identity, then by default the identity map will be provided.
-- TODO: check this:
Example
B = A[y,
Join => false,
DegreeMap => x -> 7*x,
DegreeLift => x -> apply(x, d -> d // 7)]
m = matrix {{x_B}}
degrees m
lift(m, A)
degrees oo
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, Heft]
Headline
specify a heft vector
Usage
monoid[a,b, Heft => {...}]
Description
Text
The @TT "Heft"@ option can be used to provide a @TO2("heft vectors", "heft vector")@
as a list of integers such that the dot product with the degree of each variable
will be positive. This is used as a computational aid in certain routines.
If no value for this option is specified, one will be computed automatically if
possible, hence there is no need to provide one unless the time spent computing
one is onerous; if no heft vector exists, certain computations will not be supported,
and others may take more time.
Example
R = ZZ[x,y, Degrees => {-1,-2}, Heft => {-1}]
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, Join]
[monoid, Constants]
Headline
specify how to handle degrees in the coefficient ring
Usage
monoid[a,b,c, Join => P]
Description
Text
The @TT "Join"@ option specifies whether the degrees in the new monoid ring
will be obtained by joining the degrees in the coefficient with the degrees
in the monoid.
By default, (multi)degrees are concatenated when forming polynomial rings over
polynomial rings, as can be seen by examining the corresponding flattened monoid,
which displays information about all of the variables.
Example
QQ[x][y]
oo.FlatMonoid
QQ[x][y][z]
oo.FlatMonoid
Text
That behavior can be overridden with the @TO [monoid, Join]@ option.
Example
QQ[x][y, Join => false]
oo.FlatMonoid
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, MonomialOrder]
Headline
specify the monomial ordering
Usage
monoid[a,b,c, MonomialOrder => {...}]
Description
Text
The @TT "MonomialOrder"@ option specifies the monomial ordering, see @TO "MonomialOrder"@.
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
MonomialOrder
"monomial orderings"
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, MonomialSize]
Headline
specify the bit-length of monomial exponents in the ring
Usage
monoid[a,b,c, MonomialSize => n]
Description
Text
The @TT "MonomialSize"@ option specifies the minimum number of bits to be used
for storing each exponent in a monomial. The exponents are stored as signed
binary numbers, so @TT "n"@ bits allows an exponent as large as $2^{n-1}-1$.
Useful values are 8, 16, and 32.
Node
Key
[monoid, SkewCommutative]
Headline
specify skew commuting variables in the ring
Usage
monoid[e_0..e_3, SkewCommutative => true]
monoid[u,v,x,y, SkewCommutative => {u,v}]
Description
Text
The @TT "SkewCommutative"@ option specifies which variables will skew-commute
when the monoid is used to create a ring. The value @TT "true"@ indicates that
all of the variables skew-commute. Otherwise, the value of the option may be a
list of symbols or indices corresponding to the skew-commuting variables.
Example
ZZ/101[e_0..e_3, SkewCommutative => true]
(e_0+e_1+e_2+e_3)^2
ZZ/101[x,y,vars(0..4), SkewCommutative => vars(0..4)]
c*b*a*d
ZZ/101[x,y,vars(0..4), SkewCommutative => {2..6}]
c*b*a*d
Example
R = ZZ[x,y,z, SkewCommutative => {x,y}]
x*y
y*x
x*z-z*x
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
Node
Key
[monoid, WeylAlgebra]
WeylAlgebra
Headline
specify differential operators in the ring
Usage
monoid[x,dx,y,dy, WeylAlgebra => {x => dx, y => dy}]
monoid[x,dx,y,dy,h, WeylAlgebra => {x => dx, y => dy, h}]
Description
Text
The @TT "WeylAlgebra"@ option may be used to provide a list of variables
and their corresponding differential operators in a Weyl algebra. For instance,
an option of the form @TT "x => dx"@ specifies that @TT "dx"@ plays the role of
the derivative with respect to @TT "x"@ in the resulting Weyl algebra.
Example
R = ZZ/101[x,dx,y,dy, WeylAlgebra => {x => dx, y => dy}]
dx*x
dx*x^10
dx*y^10
Text
Note that only when the monoid is used to create a polynomial ring the Weyl
algebra variables take effect. There are multiple acceptable ways to populate
this option, but the differential variable always has to come to the right
of the corresponding algebra variable.
Example
QQ[a,b,x,dx,y,dy, WeylAlgebra => { {2, 3}, {4, 5} }]
QQ[a,b,x,dx,y,dy, WeylAlgebra => { 2 => 3, 4 => 5 }]
QQ[a,b,x,dx,y,dy, WeylAlgebra => { x => dx, y => dy }]
QQ[a,b,x,dx,y,dy, WeylAlgebra => { (x, y) => (dx, dy) }]
Text
The package @TO "Dmodules::Dmodules"@ contains further methods for creating
and manipulating Weyl algebras.
Example
needsPackage "Dmodules"
makeWA(QQ[x,y])
Text
Lastly, if a single variable is provided at the end, it is used as a homogenizing
variable.
Example
QQ[x,dx,y,dy,h, WeylAlgebra => { x => dx, y => dy, h }]
dx*x^2
dx*x*y
dx*h^2
isHomogeneous(dx*(x^2+x*y+h^2))
Text
This option may also be used when creating a new ring from an existing ring,
creating a tensor product ring, or symmetric algebra.
SeeAlso
monoid
newRing
(tensor, Ring, Ring)
symmetricAlgebra
"WeylAlgebras::makeWeylAlgebra"
Node
Key
(monoid, Ring)
Usage
monoid R
Inputs
R:Ring
Outputs
:Monoid
the monoid of monomials in the polynomial ring @TT "R"@
Description
Text
If @TT "R"@ is a quotient ring of a polynomial ring @TT "S"@, then the monoid of
@TT "S"@ is returned.
Example
R = QQ[a..d, Weights=>{1,2,3,4}]
M = monoid R
use M
class a
///
|