1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
-- -*- coding: utf-8 -*-
--- status: DRAFT
--- author(s): MES
--- notes:
-- in Classic: (monomialIdeal, String)
document {
Key => MonomialIdeal,
Headline => "the class of all monomial ideals handled by the engine",
"Monomial ideals are kinds of ideals, but many algorithms are much faster.
Generally, any routines available for ideals are also available for monomial
ideals.",
EXAMPLE lines ///
R = QQ[a..d];
I = monomialIdeal(a*b*c,b*c*d,a^2*d,b^3*c)
I^2
I + monomialIdeal(b*c)
I : monomialIdeal(b*c)
radical I
associatedPrimes I
primaryDecomposition I
///,
HEADER3 "Specialized functions only available for monomial ideals",
UL {
TO (borel,MonomialIdeal),
TO (isBorel,MonomialIdeal),
TO (symbol-, MonomialIdeal, MonomialIdeal),
TO (dual, MonomialIdeal),
TO independentSets,
TO "PrimaryDecomposition::irreducibleDecomposition",
TO standardPairs,
},
EXAMPLE lines ///
borel I
isBorel I
I - monomialIdeal(b^3*c,b^4)
standardPairs I
independentSets I
dual I
///,
"The ring of a monomial ideal must be a commutative polynomial ring. This ring must
not be a skew commuting ring, and/or a quotient ring.",
Subnodes => {
TO monomialIdeal,
TO monomialSubideal,
TO (independentSets, MonomialIdeal),
TO (standardPairs, MonomialIdeal),
TO (polarize, MonomialIdeal),
TO (codim, MonomialIdeal),
TO (symbol -, MonomialIdeal, MonomialIdeal),
TO (dual, MonomialIdeal, List),
TO (dual, MonomialIdeal, RingElement),
TO (dual, MonomialIdeal),
TO (lcm, MonomialIdeal),
},
}
document {
Key => monomialIdeal,
Headline => "make a monomial ideal",
SeeAlso => {
"Classic::monomialIdeal(String)",
},
Subnodes => {
TO (monomialIdeal, Matrix),
TO (monomialIdeal, Ideal),
},
}
document {
Key => {
(monomialIdeal,Matrix),
(monomialIdeal,RingElement),
(monomialIdeal,List),
(monomialIdeal,Sequence)},
Headline => "monomial ideal of lead monomials",
Usage => "monomialIdeal L",
Inputs => {
"L" => Nothing => {ofClass Matrix, ", ",
ofClass RingElement, ", ",
ofClass List, ", or ",
ofClass Sequence}
},
Outputs => {
MonomialIdeal => "the monomial ideal of lead monomials of the elements of L",
},
"If L is a matrix, then it must have only one row. For all of these types,
the result is generated by only the lead monomials given: no Gröbner bases are computed.
See ", TO (monomialIdeal,Ideal), " if the lead monomials of a Gröbner basis is desired.",
EXAMPLE lines ///
R = ZZ/101[a,b,c];
I = monomialIdeal(a^3,b^3,c^3, a^2-b^2)
M = monomialIdeal vars R
J = monomialIdeal 0_R
///,
"If the coefficient ring is ZZ, lead coefficients of the monomials are ignored.",
EXAMPLE lines ///
R = ZZ[x,y]
monomialIdeal(2*x,3*y)
///,
SeeAlso => {MonomialIdeal}
}
document {
Key => {
(monomialIdeal, Ideal),
(monomialIdeal, Module),
(monomialIdeal, MonomialIdeal)},
Headline => "monomial ideal of lead monomials of a Gröbner basis",
Usage => "monomialIdeal J",
Inputs => {
"J"
},
Outputs => {
MonomialIdeal => {"the monomial ideal generated by the lead monomials of a Gröbner basis of ",
TT "J" } },
"J may also be a submodule of R^1, for R the ring of J.",
EXAMPLE lines ///
R = ZZ/101[a,b,c];
I = ideal(a^3,b^3,c^3, a^2-b^2)
monomialIdeal I
monomialSubideal I
///,
"If the coefficient ring is ZZ, lead coefficients of the monomials are ignored.",
EXAMPLE lines ///
R = ZZ[x,y]
monomialIdeal ideal(2*x,3*y)
///,
SeeAlso => {MonomialIdeal,monomialSubideal}
}
document {
Key => (symbol -, MonomialIdeal, MonomialIdeal),
Headline => "monomial ideal difference",
Usage => "I - J",
Inputs => {
"I", "J"
},
Outputs => {
MonomialIdeal => {"generated by those minimal generators of I which are not in J"}
},
EXAMPLE lines ///
R = QQ[a..d];
I = monomialIdeal(a^3,b^2,a*b*c)
J = monomialIdeal(a^2,b^3,a*b*c)
I - J
J - I
I - (I-J)
///,
SeeAlso => {MonomialIdeal}
}
--document { (complement, MonomialIdeal),
-- -- compute { m^c : m minimal generator of I }, where
-- -- m^c is the product of the variables
-- -- not in the support of m.",
-- TT "complement I", " -- computes the complement of a monomial ideal.",
-- PARA{},
-- "The complement of ", TT "I", " is defined to be the ideal generated by those monomials
-- which have no factor in common with some monomial of ", TT "I", ".",
-- SeeAlso => MonomialIdeal
-- }
--
--document { (complement, MonomialIdeal, Monomial),
-- -- (I,p) -- compute { p/m : m in I }, where p is a given monomial",
-- TT "complement(I,p)", " -- ",
-- SeeAlso => MonomialIdeal
-- }
--
document {
Key => {[(dual,MonomialIdeal),Strategy], [(dual,MonomialIdeal,List),Strategy], [(dual,MonomialIdeal,RingElement),Strategy]},
PARA {
"Specify ", TT "Strategy => 1", " to test an older strategy for performing the computation."
}
}
document {
Key => (dual,MonomialIdeal,List),
Headline => "the Alexander dual",
Usage => "dual(I,e)",
Inputs => {
"I" => {"a monomial ideal"},
"e" => {"a list of exponents"}
},
Outputs => { {"the Alexander dual of ", TT "I", " formed with respect to the monomial whose exponents are listed in ", TT "e" } },
PARA { "The monomial corresponding to ", TT "e", " should be divisible by all of the minimal generators of ", TT "I", "." },
PARA {
"The computation is done by calling the ", TO "frobby", " library, written by B. H. Roune;
setting ", TO "gbTrace", " to a positive value will cause a message to be printed when it is called."
},
SeeAlso => {(dual,MonomialIdeal)}
}
document {
Key => (dual,MonomialIdeal,RingElement),
Headline => "the Alexander dual",
Usage => "dual(I,m)",
Inputs => {
"I" => {"a monomial ideal"},
"m" => {"a monomial"}
},
Outputs => { {"the Alexander dual of ", TT "I", " formed with respect to ", TT "m", "." } },
"The monomial ", TT "m", " should be divisible by all
of the minimal generators of ", TT "I", ".",
SeeAlso => {(dual,MonomialIdeal)}
}
document {
Key => (dual,MonomialIdeal),
Headline => "the Alexander dual of a monomial ideal",
Usage => "dual I",
Inputs => {
"I" => {"a monomial ideal"}
},
Outputs => {
{"the Alexander dual of ", TT "I"}
},
"If ", TT "I", "is a square free monomial ideal then ",
TT "I", " is the Stanley-Reisner ideal of a simplicial
complex. In this case, ", TT "dual I", " is the
Stanley-Reisner ideal associated to the dual complex.
In particular, ", TT "dual I", " is obtained by
switching the roles of minimal generators and prime
components.",
EXAMPLE {
"QQ[a,b,c,d];",
"I = monomialIdeal(a*b, b*c, c*d)",
"dual I",
"intersect(monomialIdeal(a,b),
monomialIdeal(b,c),
monomialIdeal(c,d))",
"dual dual I"
},
PARA{},
"For a general monomial ideal, the Alexander dual
defined as follows: Given two list of nonnegative
integers ", TT "a", " and ", TT "b", "for which ",
TT "a_i >= b_i", " for all ", TT "i", " let ",
TT "a\\b", " denote the list whose ", TT "i", "-th
entry is ", TT "a_i+1-b_i", "if ", TT "b_i >= 1",
"and ", TT "0", "otherwise. The Alexander dual with
respect to ", TT "a", " is the ideal generated by
a monomial ", TT "x^a\\b", " for each irreducible
component ", TT "(x_i^b_i)", " of ", TT "I", ".
If ", TT "a", " is not provided, it is assumed to be
the least common multiple of the minimal generators
of ", TT "I", ".",
EXAMPLE {
"QQ[x,y,z];",
"I = monomialIdeal(x^3, x*y, y*z^2)",
"dual(I, {4,4,4})",
"intersect( monomialIdeal(x^2),
monomialIdeal(x^4, y^4),
monomialIdeal(y^4, z^3))",
},
PARA{},
"One always has ", TT "dual( dual(I, a), a) == I",
" however ", TT "dual dual I", "may not equal ",
TT "I", ".",
EXAMPLE lines ///
QQ[x,y,z];
J = monomialIdeal( x^3*y^2, x*y^4, x*z, y^2*z)
dual dual J
dual( dual(J, {3,4,1}), {3,4,1})
///,
PARA{},
"See Ezra Miller's Ph.D. thesis 'Resolutions and
Duality for Monomial Ideals'.",
PARA { "Implemented by Greg Smith." },
PARA {
"The computation is done by calling the ", TO "frobby", " library, written by B. H. Roune;
setting ", TO "gbTrace", " to a positive value will cause a message to be printed when it is called."
},
Subnodes => { TO [(dual, MonomialIdeal), Strategy] },
}
document {
Key => {
monomialSubideal,
(monomialSubideal, Ideal)},
Headline => "find the largest monomial ideal in an ideal",
Usage => "monomialSubideal I",
Inputs => {
"I" => Ideal
},
Outputs => {
MonomialIdeal => {"the largest monomial ideal contained in ", TT "I"}
},
EXAMPLE lines ///
QQ[a,b,c,d];
I = ideal(b*c, c^2 - b*d, -a*c+b^2)
monomialSubideal I
///,
PARA{},
"Implemented by Greg Smith."
}
document {
Key => {isBorel,(isBorel, MonomialIdeal)},
Headline => "whether an ideal is fixed by upper triangular changes of coordinates"
}
doc ///
Key
(lcm,MonomialIdeal)
Headline
least common multiple of all minimal generators
Usage
m = lcm I
Inputs
I:MonomialIdeal
Outputs
m:RingElement
Description
Text
This function is implemented in the engine, as it is used in many algorithms involving monomial ideals.
Example
R = QQ[a..d];
I = monomialIdeal "a4,a3b6,a2b8c2,c4d5"
lcm I
first exponents lcm I
SeeAlso
(dual,MonomialIdeal)
"PrimaryDecomposition::irreducibleDecomposition(MonomialIdeal)"
"PrimaryDecomposition::primaryDecomposition(Ideal)"
///
|