File: numerator-doc.m2

package info (click to toggle)
macaulay2 1.25.05%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 172,152 kB
  • sloc: cpp: 107,824; ansic: 16,193; javascript: 4,189; makefile: 3,899; lisp: 702; yacc: 604; sh: 476; xml: 177; perl: 114; lex: 65; python: 33
file content (43 lines) | stat: -rw-r--r-- 1,032 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
--- status: DRAFT
--- author(s): MES
--- notes: 

undocumented { (numerator,QQ) }

document {
     Key => {numerator, (numerator,Divide)},
     Headline => "numerator of a fraction",
     Usage => "numerator x",
     Inputs => {
	  "x" => "a fraction"
	  },
     Outputs => {
	  {"the numerator of ", TT "x"}
	  },
     EXAMPLE "numerator (4/6)",
     PARA{},
     EXAMPLE {
	  "R = frac(ZZ[x,y]);",
	  "numerator((x+2*y-3)/(x-y))"
	  },
     PARA{},
     TT "numerator", " also works with Hilbert series.",
     EXAMPLE {
	  "R = QQ[a..d]/(a^2,b^2,c^3);",
	  "hf = hilbertSeries R",
	  "numerator hf"
	  },
     PARA {
	  "For a Laurent polynomial in a ring with inverses of variables, it gives the result after clearing
	  all the denominators in each of the terms by multiplying by a suitable monomial."
	  },
     EXAMPLE lines ///
     R = QQ[x,y,z,Inverses => true, MonomialOrder => Lex]
     numerator (x*y^-1+y*z^-2+1+y^-1*z^-1)
     ///,
     SeeAlso => {
	  denominator,
	  "fraction fields",
	  hilbertSeries
	  }
     }