1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
--- status: TODO
--- author(s):
--- notes:
-- TODO:
-- (tensor, Matrix, Matrix)
-- (tensor, Module, Module)
L := {
(tensor, QuotientRing, QuotientRing),
(tensor, PolynomialRing, PolynomialRing),
(tensor, QuotientRing, PolynomialRing),
(tensor, PolynomialRing, QuotientRing)
}
undocumented L
undocumented flatten table(L, {
DegreeLift, DegreeMap, DegreeRank, Degrees, DegreeGroup, Global, Heft,
Constants, Join, Local, MonomialOrder, MonomialSize, VariableBaseName,
Inverses, Variables, SkewCommutative, Weights, WeylAlgebra}, (m,o) -> [m, o])
doc ///
Node
Key
(tensor, Monoid, Monoid)
[(tensor, Monoid, Monoid), DegreeLift]
[(tensor, Monoid, Monoid), DegreeMap]
[(tensor, Monoid, Monoid), DegreeRank]
[(tensor, Monoid, Monoid), DegreeGroup]
[(tensor, Monoid, Monoid), Degrees]
[(tensor, Monoid, Monoid), Global]
[(tensor, Monoid, Monoid), Heft]
[(tensor, Monoid, Monoid), Inverses]
[(tensor, Monoid, Monoid), Constants]
[(tensor, Monoid, Monoid), Join]
[(tensor, Monoid, Monoid), Local]
[(tensor, Monoid, Monoid), MonomialOrder]
[(tensor, Monoid, Monoid), MonomialSize]
[(tensor, Monoid, Monoid), VariableBaseName]
[(tensor, Monoid, Monoid), Variables]
[(tensor, Monoid, Monoid), SkewCommutative]
[(tensor, Monoid, Monoid), Weights]
[(tensor, Monoid, Monoid), WeylAlgebra]
(tensor, Ring, Ring)
[(tensor, Ring, Ring), DegreeLift]
[(tensor, Ring, Ring), DegreeMap]
[(tensor, Ring, Ring), DegreeRank]
[(tensor, Ring, Ring), DegreeGroup]
[(tensor, Ring, Ring), Degrees]
[(tensor, Ring, Ring), Global]
[(tensor, Ring, Ring), Heft]
[(tensor, Ring, Ring), Inverses]
[(tensor, Ring, Ring), Constants]
[(tensor, Ring, Ring), Join]
[(tensor, Ring, Ring), Local]
[(tensor, Ring, Ring), MonomialOrder]
[(tensor, Ring, Ring), MonomialSize]
[(tensor, Ring, Ring), VariableBaseName]
[(tensor, Ring, Ring), Variables]
[(tensor, Ring, Ring), SkewCommutative]
[(tensor, Ring, Ring), Weights]
[(tensor, Ring, Ring), WeylAlgebra]
(symbol**, Ring, Ring)
(symbol^**, Ring, ZZ)
(symbol**, Monoid, Monoid)
(symbol^**, Monoid, ZZ)
Headline
tensor product of monoids
Usage
C = A ** B
C = tensor(A, B, ...)
Inputs
A:{Ring,Monoid}
B:{Ring,Monoid}
DegreeRank => ZZ -- see @TO [monoid,DegreeRank]@
Degrees => List -- see @TO [monoid,Degrees]@
Inverses => Boolean -- see @TO [monoid,Inverses]@
Global => Boolean -- see @TO [monoid,Global]@
Local => Boolean -- see @TO [monoid,Local]@
MonomialOrder => List -- see @TO [monoid,MonomialOrder]@
MonomialSize => ZZ -- see @TO [monoid,MonomialSize]@
Variables => List -- see @TO [monoid,Variables]@
VariableBaseName => Symbol -- see @TO [monoid,VariableBaseName]@
Heft => List -- see @TO [monoid,Heft]@
Join => Boolean -- overrides the corresponding option in {\tt A}; see @TO [monoid,Join]@
DegreeMap => Boolean -- overrides the corresponding option in {\tt A}; see @TO [monoid,DegreeMap]@
DegreeLift => Boolean -- overrides the corresponding option in {\tt A}; see @TO [monoid,DegreeLift]@
Constants => Boolean -- ignored by this routine
SkewCommutative => Boolean -- ignored by this routine
WeylAlgebra => List -- ignored by this routine
Weights => List -- ignored by this routine
Outputs
C:{Ring,Monoid}
tensor product of the monoids or rings
Description
Text
This is the same as {\tt A ** B} except that options are allowed,
see @TO (symbol **, Monoid, Monoid)@ and @TO (symbol **, Ring, Ring)@.
This method allows many of the options available for monoids, see @TO monoid@ for details.
This method essentially combines the variables of {\tt A} and {\tt B} into one monoid or ring.
Example
kk = ZZ/101
A = kk[a,b]
B = kk[c,d,e]
Text
The simplest version is to simply use @TO symbol**@:
Example
describe(A**B)
Text
If you wish to change the variable names:
Example
describe tensor(A, B, VariableBaseName => p)
describe tensor(A, B, Variables => {a1,a2,b1,b2,b3})
Text
The tensor product of two singly graded rings is bigraded.
Sometimes you want a singly graded ring. Here is one way to get it:
Example
describe (C = tensor(A, B, DegreeRank => 1, Degrees => {5:1}))
degreeLength C
degreesRing C
Text
Packing monomials into smaller space is more efficient, but less flexible.
The default is 32 bits, so if you want to pack them into 8 bit exponents, use:
Example
describe tensor(A, B, MonomialSize => 8)
Text
The default monomial order for tensor products is a product order.
Sometimes other orders are more desirable, e.g. GRevLex, or an elimination order:
Example
describe (C = tensor(A, B, MonomialOrder => Eliminate numgens A))
describe (C = tensor(A, B, MonomialOrder => GRevLex))
Text
If you tensor two skew-commutative rings, (or one skew commutative ring with a commutative polynomial ring),
then all of the skew-commuting variables skew commute with each other:
Example
As = kk[a, b, SkewCommutative => true]
D = kk[c, d, e, SkewCommutative => true]
E = tensor(As, D)
describe E
c * a
Text
Similarly, tensoring two Weyl algebras (or one and a polynomial ring) produces
a Weyl algebra with both sets of non-commuting pairs.
Example
E = kk[x, Dx, WeylAlgebra => {x => Dx}]
tensor(E, E, Variables => {x, Dx, y, Dy})
describe oo
Text
Two polynomial rings must have the same coefficient ring, otherwise an error is issued.
Currently, there is no way to specify other rings over which to define the tensor product.
Example
A = ZZ/101[a, b]
B = A[x, y]
C = tensor(B, B, Variables => {x1, y1, x2, y2})
describe C
Text
The flat monoid with the all variables visible, including those from the base ring,
can be obtained as follows.
Example
C.FlatMonoid
Caveat
Not all of the options for monoid are useful here. Some are silently ignored.
SeeAlso
describe
degreesRing
degreeLength
symbol**
FlatMonoid
Node
Key
(tensor, RingMap, Matrix)
(tensor, RingMap, Module)
(symbol**, RingMap, Matrix)
(symbol**, RingMap, Module)
Headline
tensor product via a ring map
Usage
f ** M
tensor(f, M)
Inputs
f:RingMap
from $R \to S$
M:{Matrix,Module}
over the source ring $R$ of {\tt f}
Outputs
:{Matrix,Module}
the same type as {\tt M}, but over the target ring $S$ of {\tt f}
Description
Example
R = QQ[a..d]
S = QQ[s,t]
F = map(S,R,{s^4,s^3*t,s*t^3,t^4})
m = matrix{{a,b,c,d}}
F ** m
F ** image m
SeeAlso
(symbol SPACE, RingMap, Module)
(symbol SPACE, RingMap, Module)
///
doc ///
Node
Key
(tensor, Module, Module)
(symbol**, Module, Module)
Headline
tensor product of modules
Usage
M ** N
tensor(M, N)
Inputs
M:Module
N:Module
Outputs
:Module
the tensor product of $M$ and $N$
Description
Text
If $M$ has generators $m_1, $m_2, \dots, $m_r$, and $N$ has generators $n_1, n_2, \dots, n_s$,
then $M \otimes N$ has generators $m_i\otimes n_j$ for $0<i\leq r$ and $0<j\leq s$.
Example
R = ZZ[a..d];
M = image matrix {{a,b}}
N = image matrix {{c,d}}
M ** N
N ** M
Text
Use @TO trim@ or @TO minimalPresentation@ if a more compact presentation is desired.
Text
Use @TO flip@ to produce the isomorphism $M \otimes N \to N \otimes M$.
Text
To recover the factors from the tensor product, use the function @TO formation@.
SeeAlso
flip
(tensor, Module, Matrix)
(tensor, Matrix, Matrix)
formation
Node
Key
(tensor, Matrix, Module)
(tensor, Module, Matrix)
(symbol **, Matrix, Module)
(symbol **, Module, Matrix)
Headline
tensor product
Usage
f ** M
M ** f
tensor(f, M)
tensor(M, f)
Inputs
f:Matrix
M:Module
Outputs
:Matrix
formed by tensoring $f$ with the identity map of $M$
Description
Example
R = ZZ/101[x,y];
R^2 ** vars R
(vars R) ** R^2
Text
When $N$ is a free module of rank 1 the net effect of the operation is to shift the degrees of $f$.
Example
R = ZZ/101[t];
f = matrix {{t}}
degrees source f
degrees source (f ** R^{-3})
SeeAlso
adjoint
(tensor, Module, Module)
(tensor, Matrix, Matrix)
Subnodes
flip
tensorAssociativity
Node
Key
(tensor, Matrix, Matrix)
(symbol**, Matrix, Matrix)
Headline
tensor product
Usage
f ** g
tensor(f, g)
Inputs
f:Matrix
g:Matrix
Outputs
:Matrix
the tensor product of maps $f$ and $g$
Description
Text
Other names for the tensor product include: the outer product, or the Kronecker product of two matrices.
Example
R = ZZ[a..d];
f = matrix {{a,b}}
g = transpose matrix {{c,d}}
f ** g
SeeAlso
flip
(tensor, Module, Module)
(tensor, Matrix, Module)
--(tensor, Vector, Vector)
Node
Key
--(tensor, Vector, Vector)
(symbol**, Vector, Vector)
Headline
tensor product
Usage
v ** w
tensor(v, w)
Inputs
v:Vector
w:Vector
Outputs
:Vector
the tensor product of $v$ and $w$
Description
Text
If $v$ is in the module $M$ and $w$ is in the module $N$, then $v\otimes w$ is in the module $M\otimes N$.
Example
R = ZZ[a..d];
F = R^3
G = coker vars R
v = (a-37)*F_1
v ** G_0
SeeAlso
flip
(tensor, Module, Module)
(tensor, Matrix, Module)
(tensor, Matrix, Matrix)
Node
Key
flip
(flip, Module, Module)
Headline
isomorphism map of commutativity of tensor product
Usage
flip(F, G)
Inputs
F:Module
G:Module
Outputs
:Matrix
the matrix representing the natural isomorphism $F \otimes G \to G \otimes F$
Description
Example
R = QQ[x,y];
F = R^{1,2,3}
G = R^{10,20,30}
f = flip(F,G)
isHomogeneous f
target f
source f
target f === G**F
source f === F**G
u = x * F_0
v = y * G_1
u ** v
v ** u
f * (u ** v)
f * (u ** v) === v ** u
Node
Key
--(tensor, Module, Ring)
--(tensor, Ideal, Ring)
--(tensor, Ring, Ideal)
--(tensor, Ring, Module)
(symbol **, Module, Ring)
(symbol **, Ideal, Ring)
(symbol **, Ring, Ideal)
(symbol **, Ring, Module)
Headline
tensor product
Usage
M ** R
R ** M
tensor(M, R)
tensor(R, M)
Inputs
M:{Module,Ideal}
R:Ring
Outputs
:Module
over $R$, obtained by forming the tensor product of the module $M$ with $R$
Description
Text
If the ring of $M$ is a base ring of $R$ then the matrix presenting
the module will be simply promoted (see @TO promote@).
Otherwise, a ring map from the ring of @TT "M"@ to @TT "R"@ will be
constructed by examining the names of the variables, as described in @TO (map, Ring, Ring)@.
Example
R = ZZ/101[x,y];
M = coker vars R
M ** R[t]
Node
Key
--(tensor, Matrix, Ring)
--(tensor, Ring, Matrix)
(symbol **, Matrix, Ring)
(symbol **, Ring, Matrix)
Headline
tensor product
Usage
f ** R
R ** f
Inputs
f:Matrix
R:Ring
Outputs
:Matrix
over $R$, obtained by forming the tensor product of the map $f$ with $R$
Description
Text
The ring of $f$ should be a base ring of $R$. The degree of the map is preserved.
Example
R = ZZ[a..c];
S = R/(a+b+c);
f = vars R
f ** S
///
document {
Key => (symbol ^**, Module, ZZ),
Headline => "tensor power",
Usage => "M^**i",
Inputs => { "M", "i" },
Outputs => {Module => { "the ", TT "i", "-th tensor power of ", TT "M"}},
"The second symmetric power of the canonical module of the rational quartic:",
EXAMPLE lines ///
R = QQ[a..d];
I = monomialCurveIdeal(R,{1,3,4})
M = Ext^1(I,R^{-4})
M^**2
///
}
document {
Key => {
tensorAssociativity,
(tensorAssociativity, Module, Module, Module),
},
Headline => "associativity isomorphisms for tensor products",
TT "tensorAssociativity(A,B,C)", " -- produces the isomorphism from
A**(B**C) to (A**B)**C.",
PARA{},
"Currently implemented for modules and chain complexes.",
SeeAlso => {"OldChainComplexes :: ChainComplex", "Module"}
}
|