1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#!/usr/bin/env python
# Time-stamp: <2020-11-24 17:52:13 Tao Liu>
"""Module Description: Test functions to calculate probabilities.
This code is free software; you can redistribute it and/or modify it
under the terms of the BSD License (see the file LICENSE included with
the distribution).
"""
import unittest
from math import log10
from MACS3.Signal.Prob import *
# ------------------------------------
# Main function
# ------------------------------------
class Test_factorial(unittest.TestCase):
def setUp(self):
self.n1 = 100
self.n2 = 10
self.n3 = 1
def test_factorial_big_n1(self):
expect = 9.332622e+157
result = factorial(self.n1)
self.assertTrue( abs(result - expect) < 1e-5*result)
def test_factorial_median_n2(self):
expect = 3628800
result = factorial(self.n2)
self.assertEqual(result, expect)
def test_factorial_small_n3(self):
expect = 1
result = factorial(self.n3)
self.assertEqual(result, expect)
class Test_poisson_cdf(unittest.TestCase):
def setUp(self):
# n, lam
self.n1 = (80,100)
self.n2 = (200,100)
self.n3 = (100,1000)
self.n4 = (1500,1000)
def test_poisson_cdf_n1(self):
expect = (round(0.9773508,5),round(0.02264918,5))
result = (round(poisson_cdf(self.n1[0],self.n1[1],False),5),
round(poisson_cdf(self.n1[0],self.n1[1],True),5))
self.assertEqual( result, expect )
def test_poisson_cdf_n2(self):
expect = (round(log10(4.626179e-19),4),
round(log10(1),4))
result = (round(log10(poisson_cdf(self.n2[0],self.n2[1],False)),4),
round(log10(poisson_cdf(self.n2[0],self.n2[1],True)),4))
self.assertEqual( result, expect )
def test_poisson_cdf_n3(self):
expect = (round(log10(1),2),
round(log10(6.042525e-293),2))
result = (round(poisson_cdf(self.n3[0],self.n3[1],False,True),2),
round(poisson_cdf(self.n3[0],self.n3[1],True,True),2))
self.assertEqual( result, expect )
def test_poisson_cdf_n4(self):
expect = (round(log10(2.097225e-49),4),
round(log10(1),4))
result = (round(log10(poisson_cdf(self.n4[0],self.n4[1],False)),4),
round(log10(poisson_cdf(self.n4[0],self.n4[1],True)),4))
self.assertEqual( result, expect )
class Test_chisq_p_e(unittest.TestCase):
"""Test chisq pvalue calculation -- assuming df is an even number. We
only implemented even number pchisq for upper tail. Because this
is the function we need to combine p-values using fisher's method
"""
def setUp(self):
# x, k, p(upper), -log p upper, -log10 p upper
self.c = ((10, 2, 0.006737947, 5, 2.171472),
(100, 2, 1.92875e-22, 50, 21.71472),
(1000, 22, 1.956374e-197, 452.9382, 196.7085),
(10, 4, 0.04042768, 3.208241, 1.393321),
(100, 8, 4.269159e-18, 39.99511, 17.36966),
(1000, 80, 6.889598e-159, 364.181, 158.1618),
(54, 6, 7.377151e-10, 21.02746, 9.132111),
(565, 10, 5.518772e-115, 263.0891, 114.2582 ),
(7765, 12, 0, 3845.965, 1670.2814),
)
def test_chisq_p(self):
expect = [round(x[2],4) for x in self.c]
result = [round(chisq_pvalue_e(x[0],x[1]),4) for x in self.c]
self.assertEqual( result, expect )
def test_chisq_logp(self):
expect = [round(x[3],4) for x in self.c]
result = [round(chisq_logp_e(x[0],x[1]),4) for x in self.c]
self.assertEqual( result, expect )
def test_chisq_log10p(self):
expect = [round(x[4],4) for x in self.c]
result = [round(chisq_logp_e(x[0],x[1],log10=True),4) for x in self.c]
self.assertEqual( result, expect )
class Test_binomial_cdf(unittest.TestCase):
def setUp(self):
# x, a, b
self.n1 = (20,1000,0.01)
self.n2 = (200,1000,0.01)
def test_binomial_cdf_n1(self):
expect = (round(0.001496482,5),round(0.9985035,5))
result = (round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],False),5),
round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],True),5))
self.assertEqual( result, expect )
def test_binomial_cdf_n2(self):
expect = (round(log10(8.928717e-190),4),
round(log10(1),4))
result = (round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],False)),4),
round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],True)),4))
self.assertEqual( result, expect )
class Test_binomial_cdf_inv(unittest.TestCase):
def setUp(self):
# x, a, b
self.n1 = (0.1,1000,0.01)
self.n2 = (0.01,1000,0.01)
def test_binomial_cdf_inv_n1(self):
expect = 6
result = binomial_cdf_inv(self.n1[0],self.n1[1],self.n1[2])
self.assertEqual( result, expect )
def test_poisson_cdf_inv_n2(self):
expect = 3
result = binomial_cdf_inv(self.n2[0],self.n2[1],self.n2[2])
self.assertEqual( result, expect )
class Test_binomial_pdf(unittest.TestCase):
def setUp(self):
# x, a, b
self.n1 = (20,1000,0.01)
self.n2 = (200,1000,0.01)
def test_binomial_cdf_inv_n1(self):
expect = round(0.001791878,5)
result = round(binomial_pdf(self.n1[0],self.n1[1],self.n1[2]),5)
self.assertEqual( result, expect )
def test_poisson_cdf_inv_n2(self):
expect = round(log10(2.132196e-188),4)
result = binomial_pdf(self.n2[0],self.n2[1],self.n2[2])
result = round(log10(result),4)
self.assertEqual( result, expect )
|