File: test_Prob.py

package info (click to toggle)
macs 3.0.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 378,732 kB
  • sloc: ansic: 5,879; python: 4,342; sh: 451; makefile: 86
file content (166 lines) | stat: -rw-r--r-- 5,809 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python
# Time-stamp: <2020-11-24 17:52:13 Tao Liu>

"""Module Description: Test functions to calculate probabilities.

This code is free software; you can redistribute it and/or modify it
under the terms of the BSD License (see the file LICENSE included with
the distribution).
"""

import unittest

from math import log10
from MACS3.Signal.Prob import *

# ------------------------------------
# Main function
# ------------------------------------

class Test_factorial(unittest.TestCase):

    def setUp(self):
        self.n1 = 100
        self.n2 = 10
        self.n3 = 1

    def test_factorial_big_n1(self):
        expect = 9.332622e+157
        result = factorial(self.n1)
        self.assertTrue( abs(result - expect) < 1e-5*result)

    def test_factorial_median_n2(self):
        expect = 3628800
        result = factorial(self.n2)
        self.assertEqual(result, expect)

    def test_factorial_small_n3(self):
        expect = 1
        result = factorial(self.n3)
        self.assertEqual(result, expect)

class Test_poisson_cdf(unittest.TestCase):

    def setUp(self):
        # n, lam
        self.n1 = (80,100)
        self.n2 = (200,100)
        self.n3 = (100,1000)
        self.n4 = (1500,1000)

    def test_poisson_cdf_n1(self):
        expect = (round(0.9773508,5),round(0.02264918,5))
        result = (round(poisson_cdf(self.n1[0],self.n1[1],False),5),
                  round(poisson_cdf(self.n1[0],self.n1[1],True),5))
        self.assertEqual( result, expect )

    def test_poisson_cdf_n2(self):
        expect = (round(log10(4.626179e-19),4),
                  round(log10(1),4))
        result = (round(log10(poisson_cdf(self.n2[0],self.n2[1],False)),4),
                  round(log10(poisson_cdf(self.n2[0],self.n2[1],True)),4))
        self.assertEqual( result, expect )

    def test_poisson_cdf_n3(self):
        expect = (round(log10(1),2),
                  round(log10(6.042525e-293),2))
        result = (round(poisson_cdf(self.n3[0],self.n3[1],False,True),2),
                  round(poisson_cdf(self.n3[0],self.n3[1],True,True),2))
        self.assertEqual( result, expect )

    def test_poisson_cdf_n4(self):
        expect = (round(log10(2.097225e-49),4),
                  round(log10(1),4))
        result = (round(log10(poisson_cdf(self.n4[0],self.n4[1],False)),4),
                  round(log10(poisson_cdf(self.n4[0],self.n4[1],True)),4))
        self.assertEqual( result, expect )

class Test_chisq_p_e(unittest.TestCase):
    """Test chisq pvalue calculation -- assuming df is an even number. We
    only implemented even number pchisq for upper tail. Because this
    is the function we need to combine p-values using fisher's method

    """
    def setUp(self):
        # x, k, p(upper), -log p upper, -log10 p upper
        self.c = ((10, 2, 0.006737947, 5, 2.171472),
                  (100, 2, 1.92875e-22, 50, 21.71472),
                  (1000, 22, 1.956374e-197, 452.9382, 196.7085),
                  (10, 4, 0.04042768, 3.208241, 1.393321),
                  (100, 8, 4.269159e-18, 39.99511, 17.36966),
                  (1000, 80, 6.889598e-159, 364.181, 158.1618),
                  (54, 6, 7.377151e-10, 21.02746, 9.132111),
                  (565, 10, 5.518772e-115, 263.0891, 114.2582 ),
                  (7765, 12, 0, 3845.965, 1670.2814),
                 )

    def test_chisq_p(self):
        expect = [round(x[2],4) for x in self.c]
        result = [round(chisq_pvalue_e(x[0],x[1]),4) for x in self.c]
        self.assertEqual( result, expect )

    def test_chisq_logp(self):
        expect = [round(x[3],4) for x in self.c]
        result = [round(chisq_logp_e(x[0],x[1]),4) for x in self.c]
        self.assertEqual( result, expect )

    def test_chisq_log10p(self):
        expect = [round(x[4],4) for x in self.c]
        result = [round(chisq_logp_e(x[0],x[1],log10=True),4) for x in self.c]
        self.assertEqual( result, expect )

class Test_binomial_cdf(unittest.TestCase):

    def setUp(self):
        # x, a, b
        self.n1 = (20,1000,0.01)
        self.n2 = (200,1000,0.01)

    def test_binomial_cdf_n1(self):
        expect = (round(0.001496482,5),round(0.9985035,5))
        result = (round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],False),5),
                  round(binomial_cdf(self.n1[0],self.n1[1],self.n1[2],True),5))
        self.assertEqual( result, expect )

    def test_binomial_cdf_n2(self):
        expect = (round(log10(8.928717e-190),4),
                  round(log10(1),4))
        result = (round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],False)),4),
                  round(log10(binomial_cdf(self.n2[0],self.n2[1],self.n2[2],True)),4))
        self.assertEqual( result, expect )

class Test_binomial_cdf_inv(unittest.TestCase):

    def setUp(self):
        # x, a, b
        self.n1 = (0.1,1000,0.01)
        self.n2 = (0.01,1000,0.01)

    def test_binomial_cdf_inv_n1(self):
        expect = 6
        result = binomial_cdf_inv(self.n1[0],self.n1[1],self.n1[2])
        self.assertEqual( result, expect )

    def test_poisson_cdf_inv_n2(self):
        expect = 3
        result = binomial_cdf_inv(self.n2[0],self.n2[1],self.n2[2])
        self.assertEqual( result, expect )

class Test_binomial_pdf(unittest.TestCase):

    def setUp(self):
        # x, a, b
        self.n1 = (20,1000,0.01)
        self.n2 = (200,1000,0.01)

    def test_binomial_cdf_inv_n1(self):
        expect = round(0.001791878,5)
        result = round(binomial_pdf(self.n1[0],self.n1[1],self.n1[2]),5)
        self.assertEqual( result, expect )

    def test_poisson_cdf_inv_n2(self):
        expect = round(log10(2.132196e-188),4)
        result = binomial_pdf(self.n2[0],self.n2[1],self.n2[2])
        result = round(log10(result),4)
        self.assertEqual( result, expect )