File: test_MatchMaker.py

package info (click to toggle)
macsyfinder 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 134,860 kB
  • sloc: python: 20,583; xml: 953; sh: 37; makefile: 16
file content (385 lines) | stat: -rw-r--r-- 22,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#########################################################################
# MacSyFinder - Detection of macromolecular systems in protein dataset  #
#               using systems modelling and similarity search.          #
# Authors: Sophie Abby, Bertrand Neron                                  #
# Copyright (c) 2014-2024  Institut Pasteur (Paris) and CNRS.           #
# See the COPYRIGHT file for details                                    #
#                                                                       #
# This file is part of MacSyFinder package.                             #
#                                                                       #
# MacSyFinder is free software: you can redistribute it and/or modify   #
# it under the terms of the GNU General Public License as published by  #
# the Free Software Foundation, either version 3 of the License, or     #
# (at your option) any later version.                                   #
#                                                                       #
# MacSyFinder is distributed in the hope that it will be useful,        #
# but WITHOUT ANY WARRANTY; without even the implied warranty of        #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the          #
# GNU General Public License for more details .                         #
#                                                                       #
# You should have received a copy of the GNU General Public License     #
# along with MacSyFinder (COPYING).                                     #
# If not, see <https://www.gnu.org/licenses/>.                          #
#########################################################################

import os
import argparse

from macsypy.hit import CoreHit, ModelHit
from macsypy.config import Config, MacsyDefaults
from macsypy.gene import CoreGene, ModelGene, Exchangeable, GeneStatus
from macsypy.profile import ProfileFactory
from macsypy.model import Model
from macsypy.registries import ModelLocation
from macsypy.cluster import Cluster
from macsypy.system import OrderedMatchMaker, UnorderedMatchMaker
from macsypy.system import System, RejectedCandidate, LikelySystem, UnlikelySystem
from macsypy.error import MacsypyError

from tests import MacsyTest


class MatchMakerTest(MacsyTest):

    def setUp(self) -> None:
        args = argparse.Namespace()
        args.sequence_db = self.find_data("base", "test_1.fasta")
        args.db_type = 'gembase'
        args.models_dir = self.find_data('models')
        self.cfg = Config(MacsyDefaults(), args)

        self.model_name = 'foo'
        self.model_location = ModelLocation(path=os.path.join(args.models_dir, self.model_name))
        self.profile_factory = ProfileFactory(self.cfg)

        self.model = Model("foo/model_A", 10)
        c_gene_sctn = CoreGene(self.model_location, "sctN", self.profile_factory)
        gene_sctn = ModelGene(c_gene_sctn, self.model)

        c_gene_sctn_flg = CoreGene(self.model_location, "sctN_FLG", self.profile_factory)
        gene_sctn_flg = Exchangeable(c_gene_sctn_flg, gene_sctn)
        gene_sctn.add_exchangeable(gene_sctn_flg)

        c_gene_sctj = CoreGene(self.model_location, "sctJ", self.profile_factory)
        gene_sctj = ModelGene(c_gene_sctj, self.model)
        c_gene_sctj_flg = CoreGene(self.model_location, "sctJ_FLG", self.profile_factory)
        gene_sctj_flg = Exchangeable(c_gene_sctj_flg, gene_sctj)
        gene_sctj.add_exchangeable(gene_sctj_flg)

        c_gene_gspd = CoreGene(self.model_location, "gspD", self.profile_factory)
        gene_gspd = ModelGene(c_gene_gspd, self.model)

        c_gene_flgb = CoreGene(self.model_location, "flgB", self.profile_factory)
        gene_gspd_ex = Exchangeable(c_gene_flgb, gene_gspd)
        gene_gspd.add_exchangeable(gene_gspd_ex)

        c_gene_abc = CoreGene(self.model_location, "abc", self.profile_factory)
        gene_abc = ModelGene(c_gene_abc, self.model)
        c_gene_tadz = CoreGene(self.model_location, "tadZ", self.profile_factory)
        gene_abc_ex = Exchangeable(c_gene_tadz, gene_abc)
        gene_abc.add_exchangeable(gene_abc_ex)

        c_gene_toto = CoreGene(self.model_location, "toto", self.profile_factory)
        gene_toto = ModelGene(c_gene_toto, self.model)
        c_gene_totote = CoreGene(self.model_location, "totote", self.profile_factory)
        gene_toto_ex = Exchangeable(c_gene_totote, gene_toto)
        gene_toto.add_exchangeable(gene_toto_ex)

        self.model.add_mandatory_gene(gene_sctn)
        self.model.add_mandatory_gene(gene_sctj)
        self.model.add_accessory_gene(gene_gspd)
        self.model.add_neutral_gene(gene_toto)
        self.model.add_forbidden_gene(gene_abc)

        self.c_hits = {
                    'ch_sctj': CoreHit(c_gene_sctj, "hit_sctj", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_sctj_flg': CoreHit(c_gene_sctj_flg, "hit_sctj_flg", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_sctn': CoreHit(c_gene_sctn, "hit_sctn", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_sctn_flg': CoreHit(c_gene_sctn_flg, "hit_sctn_flg", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_gspd': CoreHit(c_gene_gspd, "hit_gspd", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_gspd_ex': CoreHit(c_gene_flgb, "hit_gspd_an", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_abc': CoreHit(c_gene_abc, "hit_abc", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_abc_ex': CoreHit(c_gene_tadz, "hit_abc_ho", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_toto': CoreHit(c_gene_toto, "hit_toto", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    'ch_toto_ex': CoreHit(c_gene_totote, "hit_toto_ho", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
                    }
        self.m_hits = {
            'mh_sctj': ModelHit(self.c_hits['ch_sctj'], gene_sctj, GeneStatus.MANDATORY),
            'mh_sctj_flg': ModelHit(self.c_hits['ch_sctj_flg'], gene_sctj_flg, GeneStatus.MANDATORY),
            'mh_sctn': ModelHit(self.c_hits['ch_sctn'], gene_sctn, GeneStatus.MANDATORY),
            'mh_sctn_flg': ModelHit(self.c_hits['ch_sctn_flg'], gene_sctn_flg, GeneStatus.MANDATORY),
            'mh_gspd': ModelHit(self.c_hits['ch_gspd'], gene_gspd, GeneStatus.ACCESSORY),
            'mh_gspd_ex': ModelHit(self.c_hits['ch_gspd_ex'], gene_gspd_ex, GeneStatus.ACCESSORY),
            'mh_abc': ModelHit(self.c_hits['ch_abc'], gene_abc, GeneStatus.FORBIDDEN),
            'mh_abc_ex': ModelHit(self.c_hits['ch_abc_ex'], gene_abc_ex, GeneStatus.FORBIDDEN),
            'mh_toto': ModelHit(self.c_hits['ch_toto'], gene_toto, GeneStatus.NEUTRAL),
            'mh_toto_ex': ModelHit(self.c_hits['ch_toto_ex'], gene_toto_ex, GeneStatus.NEUTRAL)
        }


    def test_sort_hits_by_status(self):
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        mandatory_exp = [self.m_hits['mh_sctn'], self.m_hits['mh_sctj']]
        accessory_exp = [self.m_hits['mh_gspd']]
        neutral_exp = [self.m_hits['mh_toto']]
        forbidden_exp = [self.m_hits['mh_abc']]

        mandatory, accessory, neutral, forbidden = ordered_match_maker.sort_hits_by_status(mandatory_exp + accessory_exp + neutral_exp + forbidden_exp)
        self.assertListEqual([h.gene.name for h in mandatory_exp], [h.gene.name for h in mandatory])
        self.assertListEqual([h.gene.name for h in accessory_exp], [h.gene.name for h in accessory])
        self.assertListEqual([h.gene.name for h in neutral_exp], [h.gene.name for h in neutral])
        self.assertListEqual([h.gene.name for h in forbidden_exp], [h.gene.name for h in forbidden])

        # do the same but with exchangeable
        mandatory_exp_exch = [self.m_hits['mh_sctn_flg'], self.m_hits['mh_sctj_flg']]
        accessory_exp_exch = [self.m_hits['mh_gspd_ex']]
        neutral_exp_exch = [self.m_hits['mh_toto_ex']]
        forbidden_exp_exch = [self.m_hits['mh_abc_ex']]

        mandatory, accessory, neutral, forbidden = ordered_match_maker.sort_hits_by_status(mandatory_exp_exch +
                                                                                           accessory_exp_exch +
                                                                                           neutral_exp_exch +
                                                                                           forbidden_exp_exch)
        self.assertListEqual([h.gene.name for h in mandatory_exp_exch], [h.gene.name for h in mandatory])
        self.assertListEqual([h.gene.name for h in accessory_exp_exch], [h.gene.name for h in accessory])
        self.assertListEqual([h.gene.name for h in neutral_exp_exch], [h.gene.name for h in neutral])
        self.assertListEqual([h.gene.name for h in forbidden_exp_exch], [h.gene.name for h in forbidden])

        # test if gene_ref is the ModelGene
        # alternate_of return the ModelGene of the function
        self.assertListEqual([h.gene.name for h in mandatory_exp], [h.gene_ref.alternate_of().name for h in mandatory])
        self.assertListEqual([h.gene.name for h in accessory_exp], [h.gene_ref.alternate_of().name for h in accessory])
        self.assertListEqual([h.gene.name for h in neutral_exp], [h.gene_ref.alternate_of().name for h in neutral])
        self.assertListEqual([h.gene.name for h in forbidden_exp], [h.gene_ref.alternate_of().name for h in forbidden])

        # test if the hit does not refer to gene belonging to the model
        model2 = Model("foo/model_B", 10)
        cg_fliE = CoreGene(self.model_location, "fliE", self.profile_factory)
        ch_fliE = CoreHit(cg_fliE, "hit_fliE", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20)

        mg_fliE = ModelGene(cg_fliE, model2)
        mh_fliE = ModelHit(ch_fliE, mg_fliE, GeneStatus.NEUTRAL)
        with self.assertRaises(MacsypyError) as ctx:
            with self.catch_log():
                ordered_match_maker.sort_hits_by_status([mh_fliE])
        self.assertEqual(str(ctx.exception),
                         "Gene 'fliE' not found in model 'foo/model_B'")

    def test_ordered_match(self):

        #####################
        # test single locus #
        #####################

        # it lack one mandatory gene
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 3
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertEqual(res.reasons,
                         ["The quorum of mandatory genes required (2) is not reached: 1",
                          "The quorum of genes required (3) is not reached: 2"])

        # all quorum are reached
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, System)

        # with one mandatory analog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, System)

        # with one accessory analog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd_ex']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, System)

        # the min_gene_required quorum is not reached
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertListEqual(res.reasons,
                             ["The quorum of genes required (4) is not reached: 3"])

        # the min_gene_required quorum is not reached even there is a neutral
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto']],
                     self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertEqual(res.reasons,
                         ["The quorum of genes required (4) is not reached: 3"])

        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto_ex']],
                     self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertEqual(res.reasons,
                         ["The quorum of genes required (4) is not reached: 3"])

        # the cluster contain a forbidden gene
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc']],
                     self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): abc"])

        # the cluster contain a forbidden gene homolog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc_ex']],
                     self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1])
        self.assertIsInstance(res, RejectedCandidate)
        self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): tadZ"])

        #####################
        # test multi loci   #
        #####################
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn']], self.model, self.cfg.hit_weights())
        c2 = Cluster([self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1, c2])
        self.assertIsInstance(res, System)

        # with one analog an one homolog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn_flg']], self.model, self.cfg.hit_weights())
        c2 = Cluster([self.m_hits['mh_gspd_ex']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1, c2])
        self.assertIsInstance(res, System)

        # with one analog an one homolog and one forbidden in 3 clusters
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn_flg']], self.model, self.cfg.hit_weights())
        c2 = Cluster([self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
        c3 = Cluster([self.m_hits['mh_abc']], self.model, self.cfg.hit_weights())
        ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
        res = ordered_match_maker.match([c1, c2, c3])
        self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): abc"])

    def test_unordered_match(self):

        # it lack one mandatory gene
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 3
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_gspd']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, UnlikelySystem)
        self.assertEqual(res.reasons,
                         ["The quorum of mandatory genes required (2) is not reached: 1",
                          "The quorum of genes required (3) is not reached: 2"])

        # all quorum are reached
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, LikelySystem)

        # with one mandatory analog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        hits = [self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, LikelySystem)

        # with one accessory analog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd_ex']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, LikelySystem)

        # the min_gene_required quorum is not reached
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, UnlikelySystem)
        self.assertEqual(res.reasons,
                         ["The quorum of genes required (4) is not reached: 3"])

        # the min_gene_required quorum is not reached even there is a neutral
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, UnlikelySystem)
        self.assertEqual(res.reasons,
                         ["The quorum of genes required (4) is not reached: 3"])

        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 4
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto_ex']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, UnlikelySystem)
        self.assertEqual(res.reasons,
                         ["The quorum of genes required (4) is not reached: 3"])

        # the hits contain a forbidden gene
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        allowed_hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
        forbidden_hits = [self.m_hits['mh_abc']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(allowed_hits + forbidden_hits)
        self.assertIsInstance(res, LikelySystem)
        self.assertListEqual([(h.id, h.position) for h in res.hits],
                             [(h.id, h.position) for h in allowed_hits + forbidden_hits])
        self.assertListEqual(res._forbidden_hits, [self.m_hits['mh_abc']])

        # the hits contain a forbidden gene homolog
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc_ex']]

        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(hits)
        self.assertIsInstance(res, LikelySystem)
        self.assertListEqual(res._forbidden_hits, [self.m_hits['mh_abc_ex']])

        # only one forbidden hit (no mandatory, accessory, neutral)
        self.model._min_mandatory_genes_required = 2
        self.model._min_genes_required = 1
        allowed_hits = []
        forbidden_hits = [self.m_hits['mh_abc']]
        unordered_match_maker = UnorderedMatchMaker(self.model)
        res = unordered_match_maker.match(allowed_hits + forbidden_hits)
        self.assertIsNone(res)