1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
#########################################################################
# MacSyFinder - Detection of macromolecular systems in protein dataset #
# using systems modelling and similarity search. #
# Authors: Sophie Abby, Bertrand Neron #
# Copyright (c) 2014-2024 Institut Pasteur (Paris) and CNRS. #
# See the COPYRIGHT file for details #
# #
# This file is part of MacSyFinder package. #
# #
# MacSyFinder is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# MacSyFinder is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details . #
# #
# You should have received a copy of the GNU General Public License #
# along with MacSyFinder (COPYING). #
# If not, see <https://www.gnu.org/licenses/>. #
#########################################################################
import os
import argparse
from macsypy.hit import CoreHit, ModelHit
from macsypy.config import Config, MacsyDefaults
from macsypy.gene import CoreGene, ModelGene, Exchangeable, GeneStatus
from macsypy.profile import ProfileFactory
from macsypy.model import Model
from macsypy.registries import ModelLocation
from macsypy.cluster import Cluster
from macsypy.system import OrderedMatchMaker, UnorderedMatchMaker
from macsypy.system import System, RejectedCandidate, LikelySystem, UnlikelySystem
from macsypy.error import MacsypyError
from tests import MacsyTest
class MatchMakerTest(MacsyTest):
def setUp(self) -> None:
args = argparse.Namespace()
args.sequence_db = self.find_data("base", "test_1.fasta")
args.db_type = 'gembase'
args.models_dir = self.find_data('models')
self.cfg = Config(MacsyDefaults(), args)
self.model_name = 'foo'
self.model_location = ModelLocation(path=os.path.join(args.models_dir, self.model_name))
self.profile_factory = ProfileFactory(self.cfg)
self.model = Model("foo/model_A", 10)
c_gene_sctn = CoreGene(self.model_location, "sctN", self.profile_factory)
gene_sctn = ModelGene(c_gene_sctn, self.model)
c_gene_sctn_flg = CoreGene(self.model_location, "sctN_FLG", self.profile_factory)
gene_sctn_flg = Exchangeable(c_gene_sctn_flg, gene_sctn)
gene_sctn.add_exchangeable(gene_sctn_flg)
c_gene_sctj = CoreGene(self.model_location, "sctJ", self.profile_factory)
gene_sctj = ModelGene(c_gene_sctj, self.model)
c_gene_sctj_flg = CoreGene(self.model_location, "sctJ_FLG", self.profile_factory)
gene_sctj_flg = Exchangeable(c_gene_sctj_flg, gene_sctj)
gene_sctj.add_exchangeable(gene_sctj_flg)
c_gene_gspd = CoreGene(self.model_location, "gspD", self.profile_factory)
gene_gspd = ModelGene(c_gene_gspd, self.model)
c_gene_flgb = CoreGene(self.model_location, "flgB", self.profile_factory)
gene_gspd_ex = Exchangeable(c_gene_flgb, gene_gspd)
gene_gspd.add_exchangeable(gene_gspd_ex)
c_gene_abc = CoreGene(self.model_location, "abc", self.profile_factory)
gene_abc = ModelGene(c_gene_abc, self.model)
c_gene_tadz = CoreGene(self.model_location, "tadZ", self.profile_factory)
gene_abc_ex = Exchangeable(c_gene_tadz, gene_abc)
gene_abc.add_exchangeable(gene_abc_ex)
c_gene_toto = CoreGene(self.model_location, "toto", self.profile_factory)
gene_toto = ModelGene(c_gene_toto, self.model)
c_gene_totote = CoreGene(self.model_location, "totote", self.profile_factory)
gene_toto_ex = Exchangeable(c_gene_totote, gene_toto)
gene_toto.add_exchangeable(gene_toto_ex)
self.model.add_mandatory_gene(gene_sctn)
self.model.add_mandatory_gene(gene_sctj)
self.model.add_accessory_gene(gene_gspd)
self.model.add_neutral_gene(gene_toto)
self.model.add_forbidden_gene(gene_abc)
self.c_hits = {
'ch_sctj': CoreHit(c_gene_sctj, "hit_sctj", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_sctj_flg': CoreHit(c_gene_sctj_flg, "hit_sctj_flg", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_sctn': CoreHit(c_gene_sctn, "hit_sctn", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_sctn_flg': CoreHit(c_gene_sctn_flg, "hit_sctn_flg", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_gspd': CoreHit(c_gene_gspd, "hit_gspd", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_gspd_ex': CoreHit(c_gene_flgb, "hit_gspd_an", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_abc': CoreHit(c_gene_abc, "hit_abc", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_abc_ex': CoreHit(c_gene_tadz, "hit_abc_ho", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_toto': CoreHit(c_gene_toto, "hit_toto", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
'ch_toto_ex': CoreHit(c_gene_totote, "hit_toto_ho", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20),
}
self.m_hits = {
'mh_sctj': ModelHit(self.c_hits['ch_sctj'], gene_sctj, GeneStatus.MANDATORY),
'mh_sctj_flg': ModelHit(self.c_hits['ch_sctj_flg'], gene_sctj_flg, GeneStatus.MANDATORY),
'mh_sctn': ModelHit(self.c_hits['ch_sctn'], gene_sctn, GeneStatus.MANDATORY),
'mh_sctn_flg': ModelHit(self.c_hits['ch_sctn_flg'], gene_sctn_flg, GeneStatus.MANDATORY),
'mh_gspd': ModelHit(self.c_hits['ch_gspd'], gene_gspd, GeneStatus.ACCESSORY),
'mh_gspd_ex': ModelHit(self.c_hits['ch_gspd_ex'], gene_gspd_ex, GeneStatus.ACCESSORY),
'mh_abc': ModelHit(self.c_hits['ch_abc'], gene_abc, GeneStatus.FORBIDDEN),
'mh_abc_ex': ModelHit(self.c_hits['ch_abc_ex'], gene_abc_ex, GeneStatus.FORBIDDEN),
'mh_toto': ModelHit(self.c_hits['ch_toto'], gene_toto, GeneStatus.NEUTRAL),
'mh_toto_ex': ModelHit(self.c_hits['ch_toto_ex'], gene_toto_ex, GeneStatus.NEUTRAL)
}
def test_sort_hits_by_status(self):
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
mandatory_exp = [self.m_hits['mh_sctn'], self.m_hits['mh_sctj']]
accessory_exp = [self.m_hits['mh_gspd']]
neutral_exp = [self.m_hits['mh_toto']]
forbidden_exp = [self.m_hits['mh_abc']]
mandatory, accessory, neutral, forbidden = ordered_match_maker.sort_hits_by_status(mandatory_exp + accessory_exp + neutral_exp + forbidden_exp)
self.assertListEqual([h.gene.name for h in mandatory_exp], [h.gene.name for h in mandatory])
self.assertListEqual([h.gene.name for h in accessory_exp], [h.gene.name for h in accessory])
self.assertListEqual([h.gene.name for h in neutral_exp], [h.gene.name for h in neutral])
self.assertListEqual([h.gene.name for h in forbidden_exp], [h.gene.name for h in forbidden])
# do the same but with exchangeable
mandatory_exp_exch = [self.m_hits['mh_sctn_flg'], self.m_hits['mh_sctj_flg']]
accessory_exp_exch = [self.m_hits['mh_gspd_ex']]
neutral_exp_exch = [self.m_hits['mh_toto_ex']]
forbidden_exp_exch = [self.m_hits['mh_abc_ex']]
mandatory, accessory, neutral, forbidden = ordered_match_maker.sort_hits_by_status(mandatory_exp_exch +
accessory_exp_exch +
neutral_exp_exch +
forbidden_exp_exch)
self.assertListEqual([h.gene.name for h in mandatory_exp_exch], [h.gene.name for h in mandatory])
self.assertListEqual([h.gene.name for h in accessory_exp_exch], [h.gene.name for h in accessory])
self.assertListEqual([h.gene.name for h in neutral_exp_exch], [h.gene.name for h in neutral])
self.assertListEqual([h.gene.name for h in forbidden_exp_exch], [h.gene.name for h in forbidden])
# test if gene_ref is the ModelGene
# alternate_of return the ModelGene of the function
self.assertListEqual([h.gene.name for h in mandatory_exp], [h.gene_ref.alternate_of().name for h in mandatory])
self.assertListEqual([h.gene.name for h in accessory_exp], [h.gene_ref.alternate_of().name for h in accessory])
self.assertListEqual([h.gene.name for h in neutral_exp], [h.gene_ref.alternate_of().name for h in neutral])
self.assertListEqual([h.gene.name for h in forbidden_exp], [h.gene_ref.alternate_of().name for h in forbidden])
# test if the hit does not refer to gene belonging to the model
model2 = Model("foo/model_B", 10)
cg_fliE = CoreGene(self.model_location, "fliE", self.profile_factory)
ch_fliE = CoreHit(cg_fliE, "hit_fliE", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20)
mg_fliE = ModelGene(cg_fliE, model2)
mh_fliE = ModelHit(ch_fliE, mg_fliE, GeneStatus.NEUTRAL)
with self.assertRaises(MacsypyError) as ctx:
with self.catch_log():
ordered_match_maker.sort_hits_by_status([mh_fliE])
self.assertEqual(str(ctx.exception),
"Gene 'fliE' not found in model 'foo/model_B'")
def test_ordered_match(self):
#####################
# test single locus #
#####################
# it lack one mandatory gene
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 3
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertEqual(res.reasons,
["The quorum of mandatory genes required (2) is not reached: 1",
"The quorum of genes required (3) is not reached: 2"])
# all quorum are reached
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, System)
# with one mandatory analog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, System)
# with one accessory analog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd_ex']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, System)
# the min_gene_required quorum is not reached
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertListEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
# the min_gene_required quorum is not reached even there is a neutral
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto']],
self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto_ex']],
self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
# the cluster contain a forbidden gene
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc']],
self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): abc"])
# the cluster contain a forbidden gene homolog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc_ex']],
self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1])
self.assertIsInstance(res, RejectedCandidate)
self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): tadZ"])
#####################
# test multi loci #
#####################
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj'], self.m_hits['mh_sctn']], self.model, self.cfg.hit_weights())
c2 = Cluster([self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1, c2])
self.assertIsInstance(res, System)
# with one analog an one homolog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn_flg']], self.model, self.cfg.hit_weights())
c2 = Cluster([self.m_hits['mh_gspd_ex']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1, c2])
self.assertIsInstance(res, System)
# with one analog an one homolog and one forbidden in 3 clusters
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
c1 = Cluster([self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn_flg']], self.model, self.cfg.hit_weights())
c2 = Cluster([self.m_hits['mh_gspd']], self.model, self.cfg.hit_weights())
c3 = Cluster([self.m_hits['mh_abc']], self.model, self.cfg.hit_weights())
ordered_match_maker = OrderedMatchMaker(self.model, self.cfg.redundancy_penalty())
res = ordered_match_maker.match([c1, c2, c3])
self.assertEqual(res.reasons, ["There is 1 forbidden genes occurrence(s): abc"])
def test_unordered_match(self):
# it lack one mandatory gene
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 3
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_gspd']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, UnlikelySystem)
self.assertEqual(res.reasons,
["The quorum of mandatory genes required (2) is not reached: 1",
"The quorum of genes required (3) is not reached: 2"])
# all quorum are reached
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, LikelySystem)
# with one mandatory analog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
hits = [self.m_hits['mh_sctj_flg'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, LikelySystem)
# with one accessory analog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd_ex']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, LikelySystem)
# the min_gene_required quorum is not reached
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, UnlikelySystem)
self.assertEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
# the min_gene_required quorum is not reached even there is a neutral
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, UnlikelySystem)
self.assertEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 4
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn_flg'], self.m_hits['mh_gspd'], self.m_hits['mh_toto_ex']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, UnlikelySystem)
self.assertEqual(res.reasons,
["The quorum of genes required (4) is not reached: 3"])
# the hits contain a forbidden gene
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
allowed_hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd']]
forbidden_hits = [self.m_hits['mh_abc']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(allowed_hits + forbidden_hits)
self.assertIsInstance(res, LikelySystem)
self.assertListEqual([(h.id, h.position) for h in res.hits],
[(h.id, h.position) for h in allowed_hits + forbidden_hits])
self.assertListEqual(res._forbidden_hits, [self.m_hits['mh_abc']])
# the hits contain a forbidden gene homolog
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
hits = [self.m_hits['mh_sctj'], self.m_hits['mh_sctn'], self.m_hits['mh_gspd'], self.m_hits['mh_abc_ex']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(hits)
self.assertIsInstance(res, LikelySystem)
self.assertListEqual(res._forbidden_hits, [self.m_hits['mh_abc_ex']])
# only one forbidden hit (no mandatory, accessory, neutral)
self.model._min_mandatory_genes_required = 2
self.model._min_genes_required = 1
allowed_hits = []
forbidden_hits = [self.m_hits['mh_abc']]
unordered_match_maker = UnorderedMatchMaker(self.model)
res = unordered_match_maker.match(allowed_hits + forbidden_hits)
self.assertIsNone(res)
|