1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
#########################################################################
# MacSyFinder - Detection of macromolecular systems in protein dataset #
# using systems modelling and similarity search. #
# Authors: Sophie Abby, Bertrand Neron #
# Copyright (c) 2014-2024 Institut Pasteur (Paris) and CNRS. #
# See the COPYRIGHT file for details #
# #
# This file is part of MacSyFinder package. #
# #
# MacSyFinder is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# MacSyFinder is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details . #
# #
# You should have received a copy of the GNU General Public License #
# along with MacSyFinder (COPYING). #
# If not, see <https://www.gnu.org/licenses/>. #
#########################################################################
import os
import argparse
import random
from macsypy.hit import CoreHit, ModelHit, Loner, MultiSystem, HitWeight
from macsypy.config import Config, MacsyDefaults
from macsypy.gene import CoreGene, ModelGene, Exchangeable, GeneStatus
from macsypy.profile import ProfileFactory
from macsypy.model import Model
from macsypy.registries import ModelLocation
from macsypy.cluster import Cluster
from macsypy.system import System, RejectedCandidate
from macsypy.solution import find_best_solutions, combine_clusters, combine_multisystems, Solution
from tests import MacsyTest
def _build_clusters(cfg, profile_factory):
model_name = 'foo'
model_location = ModelLocation(path=os.path.join(cfg.models_dir()[0], model_name))
models = {}
cg_sctn_flg = CoreGene(model_location, "sctN_FLG", profile_factory)
cg_sctj_flg = CoreGene(model_location, "sctJ_FLG", profile_factory)
cg_flgB = CoreGene(model_location, "flgB", profile_factory)
cg_tadZ = CoreGene(model_location, "tadZ", profile_factory)
cg_sctn = CoreGene(model_location, "sctN", profile_factory)
cg_sctj = CoreGene(model_location, "sctJ", profile_factory)
cg_gspd = CoreGene(model_location, "gspD", profile_factory)
cg_abc = CoreGene(model_location, "abc", profile_factory)
cg_sctc = CoreGene(model_location, "sctC", profile_factory)
###########
# Model A #
###########
models['A'] = Model("foo/A", 10)
mgA_sctn = ModelGene(cg_sctn, models['A'])
mgA_sctn_hom = Exchangeable(cg_sctn_flg, mgA_sctn)
mgA_sctn.add_exchangeable(mgA_sctn_hom)
mgA_sctj = ModelGene(cg_sctj, models['A'])
mgA_sctj_an = Exchangeable(cg_sctj_flg, mgA_sctj)
mgA_sctj.add_exchangeable(mgA_sctj_an)
mgA_gspd = ModelGene(cg_gspd, models['A'])
mgA_gspd_an = Exchangeable(cg_flgB, mgA_gspd)
mgA_gspd.add_exchangeable(mgA_gspd_an)
mgA_abc = ModelGene(cg_abc, models['A'])
mgA_abc_ho = Exchangeable(cg_tadZ, mgA_abc)
mgA_abc.add_exchangeable(mgA_abc_ho)
models['A'].add_mandatory_gene(mgA_sctn)
models['A'].add_mandatory_gene(mgA_sctj)
models['A'].add_accessory_gene(mgA_gspd)
models['A'].add_forbidden_gene(mgA_abc)
models['A']._min_mandatory_genes_required = 2
models['A']._min_genes_required = 2
###########
# Model B #
###########
models['B'] = Model("foo/B", 10)
mgB_sctn_flg = ModelGene(cg_sctn_flg, models['B'])
mgB_sctj_flg = ModelGene(cg_sctj_flg, models['B'])
mgB_flgB = ModelGene(cg_flgB, models['B'])
mgB_tadZ = ModelGene(cg_tadZ, models['B'])
models['B'].add_mandatory_gene(mgB_sctn_flg)
models['B'].add_mandatory_gene(mgB_sctj_flg)
models['B'].add_accessory_gene(mgB_flgB)
models['B'].add_accessory_gene(mgB_tadZ)
models['B']._min_mandatory_genes_required = 1
models['B']._min_genes_required = 2
###########
# Model C #
###########
models['C'] = Model("foo/C", 10)
mgC_sctn_flg = ModelGene(cg_sctn_flg, models['C'])
mgC_sctj_flg = ModelGene(cg_sctj_flg, models['C'])
mgC_flgB = ModelGene(cg_flgB, models['C'])
mgC_tadZ = ModelGene(cg_tadZ, models['C'])
mgC_gspd = ModelGene(cg_gspd, models['C'])
models['C'].add_mandatory_gene(mgC_sctn_flg)
models['C'].add_mandatory_gene(mgC_sctj_flg)
models['C'].add_mandatory_gene(mgC_flgB)
models['C'].add_accessory_gene(mgC_tadZ)
models['C'].add_accessory_gene(mgC_gspd)
models['C']._min_mandatory_genes_required = 1
models['C']._min_genes_required = 2
###########
# Model D #
###########
models['D'] = Model("foo/D", 10)
mgD_abc = ModelGene(cg_abc, models['D'])
mgD_sctn = ModelGene(cg_sctn, models['D'])
models['D'].add_mandatory_gene(mgD_abc)
models['D'].add_accessory_gene(mgD_sctn)
models['D']._min_mandatory_genes_required = 1
models['D']._min_genes_required = 1
###########
# Model E #
###########
models['E'] = Model("foo/E", 10)
mgE_gspd = ModelGene(cg_gspd, models['E'])
models['E'].add_accessory_gene(mgE_gspd)
models['E']._min_mandatory_genes_required = 0
models['E']._min_genes_required = 1
###########
# Model F #
###########
models['F'] = Model("foo/F", 10)
mgF_abc = ModelGene(cg_abc, models['F'])
models['F'].add_mandatory_gene(mgF_abc)
models['F']._min_mandatory_genes_required = 1
models['F']._min_genes_required = 1
#####################
# Model G idem as C #
#####################
models['G'] = Model("foo/G", 10)
mgG_sctn_flg = ModelGene(cg_sctn_flg, models['G'])
mgG_sctj_flg = ModelGene(cg_sctj_flg, models['G'])
mgG_flgB = ModelGene(cg_flgB, models['G'])
mgG_tadZ = ModelGene(cg_tadZ, models['G'])
mgG_gspd = ModelGene(cg_gspd, models['G'])
models['G'].add_mandatory_gene(mgG_sctn_flg)
models['G'].add_mandatory_gene(mgG_sctj_flg)
models['G'].add_mandatory_gene(mgG_flgB)
models['G'].add_accessory_gene(mgG_tadZ)
models['G'].add_accessory_gene(mgG_gspd)
#####################
# Model H idem as D #
#####################
models['H'] = Model("foo/H", 10)
mgH_abc = ModelGene(cg_abc, models['H'])
mgH_sctn = ModelGene(cg_sctn, models['H'])
models['H'].add_mandatory_gene(mgH_abc)
models['H'].add_accessory_gene(mgH_sctn)
models['H']._min_mandatory_genes_required = 1
models['H']._min_genes_required = 1
###########
# Model I #
###########
models['I'] = Model("foo/I", 10)
mgI_abc = ModelGene(cg_abc, models['I'])
mgI_flgB = ModelGene(cg_flgB, models['I'])
mgI_tadZ = ModelGene(cg_tadZ, models['I'])
models['I'].add_mandatory_gene(mgI_abc)
models['I'].add_mandatory_gene(mgI_flgB)
models['I'].add_accessory_gene(mgI_tadZ)
models['I']._min_mandatory_genes_required = 1
models['I']._min_genes_required = 1
###########
# model J #
###########
models['J'] = Model("foo/J", 10)
mgJ_abc = ModelGene(cg_abc, models['J'])
mgJ_gspd = ModelGene(cg_gspd, models['J'])
mgJ_tadZ = ModelGene(cg_tadZ, models['J'])
mgJ_sctc = ModelGene(cg_sctc, models['J'])
models['J'].add_mandatory_gene(mgJ_abc)
models['J'].add_mandatory_gene(mgJ_gspd)
models['J'].add_accessory_gene(mgJ_tadZ)
models['J'].add_accessory_gene(mgJ_sctc)
models['J']._min_mandatory_genes_required = 1
models['J']._min_genes_required = 1
###########
# model K #
###########
models['K'] = Model("foo/K", 10)
mgK_flgB = ModelGene(cg_flgB, models['K'])
mgK_sctn_flg = ModelGene(cg_sctn_flg, models['K'])
mgK_sctj_flg = ModelGene(cg_sctj_flg, models['K'])
mgK_sctn = ModelGene(cg_sctn, models['K'])
models['K'].add_mandatory_gene(mgK_flgB)
models['K'].add_mandatory_gene(mgK_sctn_flg)
models['K'].add_accessory_gene(mgK_sctj_flg)
models['K'].add_accessory_gene(mgK_sctn)
models['K']._min_mandatory_genes_required = 1
models['K']._min_genes_required = 1
###########
# model L #
###########
models['L'] = Model("foo/L", 10)
mgL_flgB = ModelGene(cg_flgB, models['L'])
mgL_sctn_flg = ModelGene(cg_sctn_flg, models['L'])
mgL_sctj_flg = ModelGene(cg_sctj_flg, models['L'])
mgL_sctn = ModelGene(cg_sctn, models['L'], loner=True)
models['L'].add_mandatory_gene(mgL_flgB)
models['L'].add_mandatory_gene(mgL_sctn_flg)
models['L'].add_accessory_gene(mgL_sctj_flg)
models['L'].add_accessory_gene(mgL_sctn)
###########
# model M #
###########
models['M'] = Model("foo/L", 10)
mgM_sctj = ModelGene(cg_sctj, models['M'])
mgM_gspd = ModelGene(cg_gspd, models['M'])
mgM_sctn = ModelGene(cg_sctn, models['M'], multi_system=True)
mgM_tadZ = ModelGene(cg_tadZ, models['M'])
mgM_abc = ModelGene(cg_abc, models['M'])
models['M'].add_mandatory_gene(mgM_sctj)
models['M'].add_mandatory_gene(mgM_gspd)
models['M'].add_accessory_gene(mgM_sctn)
models['M'].add_accessory_gene(mgM_tadZ)
models['M'].add_accessory_gene(mgM_abc)
###########
# model N #
###########
models['N'] = Model("foo/N", 10)
mgN_flgB = ModelGene(cg_flgB, models['N'])
mgN_sctn_flg = ModelGene(cg_sctn_flg, models['N'])
mgN_sctj = ModelGene(cg_sctj, models['N'])
mgN_sctj_flg = ModelGene(cg_sctj_flg, models['N'])
mgN_sctn = ModelGene(cg_sctn, models['N'], loner=True)
mgN_tadZ = ModelGene(cg_tadZ, models['N'], loner=True)
models['N'].add_mandatory_gene(mgN_flgB)
models['N'].add_mandatory_gene(mgN_sctn_flg)
models['N'].add_accessory_gene(mgN_sctj)
models['N'].add_accessory_gene(mgN_sctj_flg)
models['N'].add_accessory_gene(mgN_sctn)
models['N'].add_accessory_gene(mgN_tadZ)
###########
# model O #
###########
models['O'] = Model("foo/O", 10)
mgO_sctj = ModelGene(cg_sctj, models['O'], multi_system=True)
mgO_sctj_flg = Exchangeable(cg_sctj_flg, mgO_sctj)
mgO_sctj.add_exchangeable(mgO_sctj_flg)
mgO_gspd = ModelGene(cg_gspd, models['O'], loner=True, multi_system=True)
mgO_sctn = ModelGene(cg_sctn, models['O'], multi_system=True)
mgO_sctn_flg = Exchangeable(cg_sctn_flg, mgO_sctn)
mgO_sctn.add_exchangeable(mgO_sctn_flg)
mgO_tadZ = ModelGene(cg_tadZ, models['O'], loner=True)
mgO_abc = ModelGene(cg_abc, models['O'])
models['O'].add_mandatory_gene(mgO_sctj)
models['O'].add_mandatory_gene(mgO_gspd)
models['O'].add_accessory_gene(mgO_sctn)
models['O'].add_accessory_gene(mgO_tadZ)
models['O'].add_neutral_gene(mgO_abc)
ch_sctj = CoreHit(cg_sctj, "hit_sctj", 803, "replicon_id", 1, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_sctn = CoreHit(cg_sctn, "hit_sctn", 803, "replicon_id", 2, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_gspd = CoreHit(cg_gspd, "hit_gspd", 803, "replicon_id", 3, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_sctn_flg = CoreHit(cg_sctn_flg, "hit_sctn_flg", 803, "replicon_id", 4, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_sctj = CoreHit(cg_sctj, "hit_sctj", 803, "replicon_id", 5, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_sctj_flg = CoreHit(cg_sctj_flg, "hit_sctj_flg", 803, "replicon_id", 6, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_flgB = CoreHit(cg_flgB, "hit_flgB", 803, "replicon_id", 7, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_tadZ = CoreHit(cg_tadZ, "hit_tadZ", 803, "replicon_id", 8, 1.0, 1.0, 1.0, 1.0, 10, 20)
ch_abc = CoreHit(cg_abc, "hit_abc", 803, "replicon_id", 9, 1.0, 1.0, 1.0, 1.0, 10, 20)
hit_weights = HitWeight(**cfg.hit_weights())
clusters = {}
clusters['c1'] = Cluster([ModelHit(ch_sctj, gene_ref=mgA_sctj, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_sctn, gene_ref=mgA_sctn, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_gspd, gene_ref=mgA_gspd, gene_status=GeneStatus.ACCESSORY)
],
models['A'], hit_weights)
clusters['c2'] = Cluster([ModelHit(ch_sctj, gene_ref=mgA_sctj, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_sctn, gene_ref=mgA_sctn, gene_status=GeneStatus.MANDATORY)],
models['A'], hit_weights)
clusters['c3'] = Cluster([ModelHit(ch_sctj_flg, gene_ref=mgB_sctj_flg, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_tadZ, gene_ref=mgB_tadZ, gene_status=GeneStatus.ACCESSORY),
ModelHit(ch_flgB, gene_ref=mgB_flgB, gene_status=GeneStatus.ACCESSORY)],
models['B'], hit_weights)
clusters['c4'] = Cluster([ModelHit(ch_sctj_flg, gene_ref=mgC_sctj_flg, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_tadZ, gene_ref=mgC_tadZ, gene_status=GeneStatus.ACCESSORY),
ModelHit(ch_flgB, gene_ref=mgC_flgB, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_gspd, gene_ref=mgC_gspd, gene_status=GeneStatus.ACCESSORY)],
models['C'], hit_weights)
clusters['c5'] = Cluster([ModelHit(ch_abc, gene_ref=mgD_abc, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_sctn, gene_ref=mgD_sctn, gene_status=GeneStatus.ACCESSORY)],
models['D'], hit_weights)
clusters['c6'] = Cluster([ModelHit(ch_gspd, gene_ref=mgE_gspd, gene_status=GeneStatus.ACCESSORY)],
models['E'], hit_weights)
clusters['c7'] = Cluster([ModelHit(ch_abc, gene_ref=mgF_abc, gene_status=GeneStatus.MANDATORY)],
models['F'], hit_weights)
clusters['c8'] = Cluster([ModelHit(ch_flgB, gene_ref=mgI_flgB, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_tadZ, gene_ref=mgI_tadZ, gene_status=GeneStatus.ACCESSORY)],
models['I'], hit_weights)
clusters['c9'] = Cluster([ModelHit(ch_abc, gene_ref=mgJ_abc, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_tadZ, gene_ref=mgJ_tadZ, gene_status=GeneStatus.ACCESSORY)],
models['J'], hit_weights)
clusters['c10'] = Cluster([ModelHit(ch_flgB, gene_ref=mgK_flgB, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_sctn, gene_ref=mgK_sctn, gene_status=GeneStatus.ACCESSORY)],
models['K'], hit_weights)
clusters['c11'] = Cluster([ModelHit(ch_flgB, gene_ref=mgL_flgB, gene_status=GeneStatus.MANDATORY),
ModelHit(ch_sctn_flg, gene_ref=mgL_sctn_flg, gene_status=GeneStatus.MANDATORY)],
models['L'], hit_weights)
clusters['c12'] = Cluster([ModelHit(ch_sctj_flg, gene_ref=mgL_sctj_flg, gene_status=GeneStatus.ACCESSORY),
ModelHit(ch_sctn, gene_ref=mgL_sctn, gene_status=GeneStatus.ACCESSORY)],
models['L'], hit_weights)
clusters['c13'] = Cluster([Loner(ch_sctn, gene_ref=mgL_sctn, gene_status=GeneStatus.ACCESSORY)],
models['L'], hit_weights)
clusters['c14'] = Cluster([ModelHit(ch_sctj, mgM_sctj, gene_status=GeneStatus.MANDATORY),
MultiSystem(ch_sctn, gene_ref=mgM_sctn, gene_status=GeneStatus.ACCESSORY),
ModelHit(ch_gspd, gene_ref=mgM_gspd, gene_status=GeneStatus.ACCESSORY)
],
models['M'], hit_weights)
clusters['c15'] = Cluster([ModelHit(ch_tadZ, gene_ref=mgM_tadZ, gene_status=GeneStatus.ACCESSORY),
ModelHit(ch_abc, gene_ref=mgM_abc, gene_status=GeneStatus.ACCESSORY)
],
models['M'], hit_weights)
clusters['c16'] = Cluster([MultiSystem(ch_sctn, gene_ref=mgM_sctn, gene_status=GeneStatus.ACCESSORY)],
models['M'], hit_weights)
clusters['c17'] = Cluster([ModelHit(ch_flgB, mgL_flgB, GeneStatus.MANDATORY),
ModelHit(ch_sctn_flg, mgL_sctn_flg, GeneStatus.MANDATORY)],
models['N'], hit_weights)
clusters['c18'] = Cluster([ModelHit(ch_sctj, mgN_sctj, GeneStatus.MANDATORY),
ModelHit(ch_sctj_flg, mgL_sctj_flg, GeneStatus.MANDATORY)],
models['N'], hit_weights)
clusters['c19'] = Cluster([Loner(ch_sctn, mgL_sctn, GeneStatus.ACCESSORY)],
models['N'], hit_weights)
clusters['c20'] = Cluster([Loner(ch_tadZ, mgN_tadZ, GeneStatus.ACCESSORY)],
models['N'], hit_weights)
clusters['c21'] = Cluster([ModelHit(ch_sctj, mgO_sctj, GeneStatus.MANDATORY),
ModelHit(ch_abc, mgO_abc, GeneStatus.NEUTRAL),
ModelHit(ch_tadZ, mgO_tadZ, GeneStatus.ACCESSORY)],
models['O'], hit_weights)
clusters['c22'] = Cluster([ModelHit(ch_sctn_flg, mgO_sctn_flg, GeneStatus.ACCESSORY),
ModelHit(ch_gspd, mgO_gspd, GeneStatus.MANDATORY),
ModelHit(ch_tadZ, mgO_tadZ, GeneStatus.ACCESSORY)],
models['O'], hit_weights)
clusters['c23'] = Cluster([Loner(ch_gspd, mgO_gspd, gene_status=GeneStatus.MANDATORY)],
models['O'], hit_weights)
clusters['c24'] = Cluster([MultiSystem(ch_gspd, mgO_gspd, gene_status=GeneStatus.MANDATORY)],
models['O'], hit_weights)
clusters['c25'] = Cluster([MultiSystem(ch_sctn, mgO_sctn, gene_status=GeneStatus.ACCESSORY)],
models['O'], hit_weights)
clusters['c26'] = Cluster([MultiSystem(ch_sctj_flg, mgO_sctj_flg, gene_status=GeneStatus.MANDATORY)],
models['O'], hit_weights)
return models, clusters
def _build_systems(models, clusters, cfg):
systems = {}
# we need to tweek the replicon_id to have stable ressults
# whatever the number of tests ran
# or the tests order
systems['A'] = System(models['A'], [clusters['c1'], clusters['c2']], cfg.redundancy_penalty()) # 5 hits
systems['A'].id = "replicon_id_A"
systems['B'] = System(models['B'], [clusters['c3']], cfg.redundancy_penalty()) # 3 hits
systems['B'].id = "replicon_id_B"
systems['C'] = System(models['C'], [clusters['c4']], cfg.redundancy_penalty()) # 4 hits
systems['C'].id = "replicon_id_C"
systems['D'] = System(models['D'], [clusters['c5']], cfg.redundancy_penalty()) # 2 hits
systems['D'].id = "replicon_id_D"
systems['E'] = System(models['E'], [clusters['c6']], cfg.redundancy_penalty()) # 1 hit
systems['E'].id = "replicon_id_E"
systems['F'] = System(models['F'], [clusters['c7']], cfg.redundancy_penalty()) # 1 hit
systems['F'].id = "replicon_id_F"
systems['G'] = System(models['G'], [clusters['c4']], cfg.redundancy_penalty()) # 4 hits
systems['G'].id = "replicon_id_G"
systems['H'] = System(models['H'], [clusters['c5']], cfg.redundancy_penalty()) # 2 hits
systems['H'].id = "replicon_id_H"
systems['I'] = System(models['I'], [clusters['c8']], cfg.redundancy_penalty()) # 2 hits
systems['I'].id = "replicon_id_I"
systems['J'] = System(models['J'], [clusters['c9']], cfg.redundancy_penalty()) # 2 hits
systems['J'].id = "replicon_id_J"
systems['K'] = System(models['K'], [clusters['c10']], cfg.redundancy_penalty()) # 2 hits
systems['K'].id = "replicon_id_K"
return systems
class SolutionTest(MacsyTest):
def setUp(self) -> None:
args = argparse.Namespace()
args.sequence_db = self.find_data("base", "test_1.fasta")
args.db_type = 'gembase'
args.models_dir = self.find_data('models')
self.cfg = Config(MacsyDefaults(), args)
# we need to reset the ProfileFactory
# because it's a like a singleton
# so other tests are influenced by ProfileFactory and it's configuration
# for instance search_genes get profile without hmmer_exe
self.profile_factory = ProfileFactory(self.cfg)
self.models, self.clusters = _build_clusters(self.cfg, self.profile_factory)
self.systems = _build_systems(self.models, self.clusters, self.cfg)
def test_gt(self):
s1 = Solution([self.systems[k] for k in 'AB']) # 5 + 3 = 8 hits, 2 syst, 0.875, [2, 2, 3, 5, 5, 6, 7, 8]
s2 = Solution([self.systems[k] for k in 'HIJ']) # 2 + 2 + 2 = 6 hits, 3 syst, 0.722, [2, 9, 7, 8, 8, 9]
s3 = Solution([self.systems[k] for k in 'DC']) # 4 + 2 = 6 hits, 2 syst 0.900, [2, 9, 3, 6, 7, 8]
s4 = Solution([self.systems[k] for k in 'CF']) # 4 + 1 = 5 hits, 2 syst, 0.900, [3, 6, 7, 8, 9]
s5 = Solution([self.systems[k] for k in 'EC']) # 1 + 4 = 5 hits, 2 syst, 0.900, [3, 3, 6, 7, 8]
s6 = Solution([self.systems[k] for k in 'DB']) # 2 + 3 = 5 hits, 2 syst, 0.875, [2, 9, 6, 7, 8]
self.assertGreater(s1, s2) # s1 more hits than s2
self.assertGreater(s2, s3) # s2 more systems than s3
self.assertGreater(s5, s6) # s5 greater awholeness than s6
self.assertGreater(s4, s5) # s4 "bigger positions than s5
def test_lt(self):
s1 = Solution([self.systems[k] for k in 'AB']) # 5 + 3 = 8 hits, 2 syst, 0.875, [2, 2, 3, 5, 5, 6, 7, 8]
s2 = Solution([self.systems[k] for k in 'HIJ']) # 2 + 2 + 2 = 6 hits, 3 syst, 0.722, [2, 9, 7, 8, 8, 9]
s3 = Solution([self.systems[k] for k in 'DC']) # 4 + 2 = 6 hits, 2 syst 0.900, [2, 9, 3, 6, 7, 8]
s4 = Solution([self.systems[k] for k in 'CF']) # 4 + 1 = 5 hits, 2 syst, 0.900, [3, 6, 7, 8, 9]
s5 = Solution([self.systems[k] for k in 'EC']) # 1 + 4 = 5 hits, 2 syst, 0.900, [3, 3, 6, 7, 8]
s6 = Solution([self.systems[k] for k in 'DB']) # 2 + 3 = 5 hits, 2 syst, 0.875, [2, 9, 6, 7, 8]
self.assertLess(s2, s1) # s1 more hits than s2
self.assertLess(s3, s2) # s2 more systems than s3
self.assertLess(s6, s5) # s5 greater awholeness than s6
self.assertLess(s5, s4) # s4 "bigger positions than s5
def test_sorting(self):
s1 = Solution([self.systems[k] for k in 'AB']) # 5 + 3 = 8 hits, 2 syst, 0.875, [2, 2, 3, 5, 5, 6, 7, 8]
s2 = Solution([self.systems[k] for k in 'HIJ']) # 2 + 2 + 2 = 6 hits, 3 syst, 0.722, [2, 9, 7, 8, 8, 9]
s3 = Solution([self.systems[k] for k in 'DC']) # 4 + 2 = 6 hits, 2 syst 0.900, [2, 9, 3, 6, 7, 8]
s4 = Solution([self.systems[k] for k in 'CF']) # 4 + 1 = 5 hits, 2 syst, 0.900, [3, 6, 7, 8, 9]
s5 = Solution([self.systems[k] for k in 'EC']) # 1 + 4 = 5 hits, 2 syst, 0.900, [3, 3, 6, 7, 8]
s6 = Solution([self.systems[k] for k in 'DB']) # 2 + 3 = 5 hits, 2 syst, 0.875, [2, 9, 6, 7, 8]
expected_order = [s6, s5, s4, s3, s2, s1]
shuffled_sol = expected_order[:]
random.shuffle(shuffled_sol)
sorted_sol = sorted(shuffled_sol)
self.assertEqual(expected_order, sorted_sol)
def test_systems(self):
s1 = Solution([self.systems[k] for k in 'CD'])
self.assertEqual([self.systems['D'], self.systems['C']],
s1.systems)
def test_score(self):
s = Solution([self.systems[k] for k in 'CD'])
self.assertEqual(s.score, 4.5)
s = Solution([self.systems[k] for k in 'HIJ'])
self.assertEqual(s.score, 4.5)
def test_average_wholeness(self):
s = Solution([self.systems[k] for k in 'CD'])
self.assertEqual(s.average_wholeness, 0.9)
s = Solution([self.systems[k] for k in 'HIJ'])
self.assertEqual(s.average_wholeness, 0.7222222222222222)
def test_hits_number(self):
s = Solution([self.systems[k] for k in 'CD'])
self.assertEqual(s.hits_number, 6)
s = Solution([self.systems[k] for k in 'AB'])
self.assertEqual(s.hits_number, 8)
def test_hits_positions(self):
s = Solution([self.systems[k] for k in 'CD'])
self.assertEqual(s.hits_positions,
[2, 9, 3, 6, 7, 8])
s = Solution([self.systems[k] for k in 'AB'])
self.assertEqual(s.hits_positions,
[2, 2, 3, 5, 5, 6, 7, 8])
def test_iteration(self):
# be careful the systems are ordered in Solution
systems = [self.systems[k] for k in 'HIJ']
s = Solution(systems)
got = [syst for syst in s]
self.assertEqual(systems,
got)
class SolutionExplorerTest(MacsyTest):
@classmethod
def setUpClass(cls) -> None:
# to turn on debugging
# uncomment the 3 following lines
# import macsypy
# macsypy.init_logger()
# macsypy.logger_set_level('DEBUG')
pass
def setUp(self) -> None:
args = argparse.Namespace()
args.sequence_db = self.find_data("base", "test_1.fasta")
args.db_type = 'gembase'
args.models_dir = self.find_data('models')
self.cfg = Config(MacsyDefaults(), args)
# we need to reset the ProfileFactory
# because it's a like a singleton
# so other tests are influenced by ProfileFactory and it's configuration
# for instance search_genes get profile without hmmer_exe
self.profile_factory = ProfileFactory(self.cfg)
self.models, self.clusters = _build_clusters(self.cfg, self.profile_factory)
self.systems = _build_systems(self.models, self.clusters, self.cfg)
def test_find_best_solution(self):
systems = [self.systems[k] for k in 'ABCD']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
# sorted_syst = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_A', 1.5), ('replicon_id_D', 1.5)]
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_A ['hit_sctj', 'hit_sctn', 'hit_gspd', 'hit_sctj', 'hit_sctn']
# replicon_id_D ['hit_abc', 'hit_sctn']
# C and D are compatible 4.5
# B and A are compatible 3.5
# B and D are compatible 3.5
# So the best Solution expected is C D 4.5
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'CD'])]
# The order of solutions are not relevant
# The order of systems in each solutions are not relevant
# transform list in set to compare them
self.assertEqual(score, 4.5)
self.assertEqual(best_sol, expected_sol)
systems = [self.systems[k] for k in 'ABC']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
# sorted_syst = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_A', 1.5)]
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_A ['hit_sctj', 'hit_sctn', 'hit_gspd', 'hit_sctj', 'hit_sctn']
# C is alone 3.0
# B and A are compatible 3.5
# So the best Solution expected is B and A
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'BA'])]
self.assertEqual(score, 3.5)
self.assertEqual(best_sol, expected_sol)
systems = [self.systems[k] for k in 'BCE']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
# sorted_syst = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_E', 0.5)]
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_E ['hit_gspd']
# C is alone 3.0
# B and E are compatible 2.5
# So the best Solution expected is C
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'C'])]
self.assertEqual(score, 3.0)
self.assertEqual(best_sol, expected_sol)
# systems = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_A', 1.5),
# ('replicon_id_D', 1.5), ('replicon_id_E', 0.5)]
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_A ['hit_sctj', 'hit_sctn', 'hit_gspd', 'hit_sctj', 'hit_sctn']
# replicon_id_D ['hit_abc', 'hit_sctn']
# replicon_id_E ['hit_gspd']
# C and D are compatible 4.5
# B and A are compatible 3.5
# B and E are compatible 2.5
# D and E are compatible 2.0
systems = [self.systems[k] for k in 'ABCDE']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'CD'])]
self.assertEqual(score, 4.5)
self.assertEqual(best_sol, expected_sol)
# systems = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_A', 1.5),
# ('replicon_id_D', 1.5), ('replicon_id_E', 0.5), ('replicon_id_F', 1.0)]
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_A ['hit_sctj', 'hit_sctn', 'hit_gspd', 'hit_sctj', 'hit_sctn']
# replicon_id_D ['hit_abc', 'hit_sctn']
# replicon_id_E ['hit_gspd']
# replicon_id_F ['hit_abc']
# C and D are compatible 4.5
# C and F are compatible 4.0
# B and A and F are compatible 4.5
# B and D and E are compatible 4.0
# B and E and F are compatible 3.5
# So the best Solution expected are C D / B A F
systems = [self.systems[k] for k in 'ABCDEF']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'BAF']), # 3 + 5 + 1 = 9 hits
Solution([self.systems[k] for k in 'CD'])] # 4 + 2 = 7 hits
self.assertEqual(best_sol[0].score, 4.5)
self.assertEqual(best_sol[1].score, 4.5)
# test if the composition is right
self.assertEqual(best_sol, expected_sol)
# test if solution order is right
systems = [self.systems[k] for k in 'ABCDGH']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
# sorted_syst = [('replicon_id_C', 3.0), ('replicon_id_B', 2.0), ('replicon_id_A', 1.5), ('replicon_id_D', 1.5)
# ('replicon_id_G', 3.0), ('replicon_id_H', 1.5)]
# replicon_id_A ['hit_sctj', 'hit_sctn', 'hit_gspd', 'hit_sctj', 'hit_sctn']
# replicon_id_B ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB']
# replicon_id_C ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_D ['hit_abc', 'hit_sctn']
# replicon_id_G ['hit_sctj_flg', 'hit_tadZ', 'hit_flgB', 'hit_gspd']
# replicon_id_H ['hit_abc', 'hit_sctn']
# C and D are compatible 4.5 wholeness = 0.8 + 1.0 = 1.8
# C and H are compatible 4.5 0.8 + 1.0 = 1.8
# G and D are compatible 4.5 0.8 + 1.0 = 1.8
# G and H are compatible 4.5 0.8 + 1.0 = 1.8
# B and A are compatible 3.5 0.75 + 1.0 = 1.75
# So the best Solution expected are C D / C H / G D / G H with score 4.5
best_sol, score = find_best_solutions(sorted_syst)
expected_sol = [Solution([self.systems[k] for k in 'CD']), # 4 + 2 hits
Solution([self.systems[k] for k in 'CH']), # 4 + 2
Solution([self.systems[k] for k in 'GD']), # 4 + 2
Solution([self.systems[k] for k in 'GH'])] # 4 + 2
self.assertEqual(score, 4.5)
self.assertEqual(best_sol, expected_sol)
systems = [self.systems[k] for k in 'HJKI']
sorted_syst = sorted(systems, key=lambda s: (- s.score, s.id))
best_sol, score = find_best_solutions(sorted_syst)
# check if solution is ordered by wholeness average (3rd criterion)
# first criterion nb of hits
# second citerion nb of systems
# replicon_id_H ['hit_abc', 'hit_sctn']
# replicon_id_I ['hit_flgB', 'hit_tadZ']
# replicon_id_J ['hit_abc', 'hit_tadZ']
# replicon_id_K ['hit_flgB', 'hit_sctn']
# score Nb hits nb sys wholeness
expected_sol = [Solution([self.systems[k] for k in 'HI']), # 1.5 + 1.5 = 3.0 4 2 1.0
Solution([self.systems[k] for k in 'JK'])] # 1.5 + 1.5 = 3.0 4 2 0.5
self.assertEqual(score, 3.0)
self.assertEqual(best_sol, expected_sol)
def test_combine_clusters(self):
##################################################
# with 3 regular clusters 0 loner 0 multisystyem
##################################################
combinations = combine_clusters([self.clusters['c1'], self.clusters['c2'], self.clusters['c3']],
{},
multi_loci=False)
self.assertEqual(combinations,
[
(self.clusters['c1'],),
(self.clusters['c2'],),
(self.clusters['c3'],)
])
# the same in multi loci
combinations = combine_clusters([self.clusters['c1'], self.clusters['c2'], self.clusters['c3']],
{},
multi_loci=True)
exp_combs = [
(self.clusters['c1'],),
(self.clusters['c2'],),
(self.clusters['c3'],),
(self.clusters['c1'], self.clusters['c2']),
(self.clusters['c1'], self.clusters['c3']),
(self.clusters['c2'], self.clusters['c3']),
(self.clusters['c1'], self.clusters['c2'], self.clusters['c3'])
]
self.assertEqual(combinations, exp_combs)
###########################################
# with 2 RC + 1 L not included in cluster
###########################################
combinations = combine_clusters([self.clusters['c11'], self.clusters['c12']],
{},
multi_loci=False)
exp_combs = [
(self.clusters['c11'],),
(self.clusters['c12'],)
]
self.assertEqual(combinations, exp_combs)
# the same in multi loci
combinations = combine_clusters([self.clusters['c11'], self.clusters['c12']],
{},
multi_loci=True)
exp_combs = [
(self.clusters['c11'],),
(self.clusters['c12'],),
(self.clusters['c11'], self.clusters['c12'])
]
self.assertEqual(combinations, exp_combs)
##################################
# with 2 RC + 1 L already in RC 2
##################################
# c11 = flgB, sctn_flg
# c12 = sctj_flg, sctn
# c13 = Loner sctn
combinations = combine_clusters([self.clusters['c11'], self.clusters['c12']],
{'sctN': self.clusters['c13']},
multi_loci=False)
exp_combs = [
(self.clusters['c11'],),
(self.clusters['c12'],),
(self.clusters['c11'], self.clusters['c13']),
(self.clusters['c13'],),
]
self.assertEqual(combinations, exp_combs)
# the same in multi loci
combinations = combine_clusters([self.clusters['c11'], self.clusters['c12']],
{'sctN': self.clusters['c13']},
multi_loci=True)
exp_combs = [
(self.clusters['c11'],),
(self.clusters['c12'],),
(self.clusters['c11'], self.clusters['c12']),
(self.clusters['c11'], self.clusters['c13']),
(self.clusters['c13'],),
]
self.assertEqual(combinations, exp_combs)
###########################################
# with 2 RC with one containing a MS #
###########################################
combinations = combine_clusters([self.clusters['c14'], self.clusters['c15']],
{'sctN': self.clusters['c16']},
multi_loci=True)
# c14 contains a MS
# c15 do not contains MS
# c16 is the artificial cluster with only sctn
exp_combs = [
(self.clusters['c14'],),
(self.clusters['c15'],),
(self.clusters['c14'], self.clusters['c15']),
(self.clusters['c15'], self.clusters['c16']),
(self.clusters['c16'],)]
self.assertEqual(combinations, exp_combs)
###########################################
# with 2 RC + 2 L not included in cluster
###########################################
combinations = combine_clusters([self.clusters['c17'], self.clusters['c18']],
{'sctn': self.clusters['c19'],
'tadZ': self.clusters['c20']
},
multi_loci=False)
exp_combs = [
(self.clusters['c17'],),
(self.clusters['c18'],),
(self.clusters['c17'], self.clusters['c19']),
(self.clusters['c18'], self.clusters['c19']),
(self.clusters['c19'],),
(self.clusters['c17'], self.clusters['c20']),
(self.clusters['c18'], self.clusters['c20']),
(self.clusters['c20'],),
(self.clusters['c17'], self.clusters['c19'], self.clusters['c20']),
(self.clusters['c18'], self.clusters['c19'], self.clusters['c20']),
(self.clusters['c19'], self.clusters['c20'])
]
self.assertEqual(combinations, exp_combs)
# the same in multi loci
combinations = combine_clusters([self.clusters['c17'], self.clusters['c18']],
{'sctn': self.clusters['c19'],
'tadZ': self.clusters['c20']
},
multi_loci=True)
exp_combs = [
(self.clusters['c17'],),
(self.clusters['c18'],),
(self.clusters['c17'], self.clusters['c18']),
(self.clusters['c17'], self.clusters['c19']),
(self.clusters['c18'], self.clusters['c19']),
(self.clusters['c17'],self.clusters['c18'], self.clusters['c19']),
(self.clusters['c19'],),
(self.clusters['c17'], self.clusters['c20']),
(self.clusters['c18'], self.clusters['c20']),
(self.clusters['c17'],self.clusters['c18'], self.clusters['c20']),
(self.clusters['c20'],),
(self.clusters['c17'], self.clusters['c19'], self.clusters['c20']),
(self.clusters['c18'], self.clusters['c19'], self.clusters['c20']),
(self.clusters['c17'], self.clusters['c18'], self.clusters['c19'], self.clusters['c20']),
(self.clusters['c19'], self.clusters['c20'])
]
# print("\n####################################################################")
# for comb in exp_combs:
# print([c.id for c in comb])
# print("==============================")
# for comb in combinations:
# print([c.id for c in comb])
self.assertEqual(combinations, exp_combs)
def test_combine_multisystems(self):
# key id hits
# c21 c47 sctj abc tadz
# c22 c48 sctn_flg gspd tadz
# c23 c49 Loner gspd
# c24 c50 MS gspd
# c25 c51 MS sctn
# c26 c52 MS sctj_flg
rejected_clst = RejectedCandidate(self.models['O'],
[self.clusters['c21']],
'fake_reason')
combinations = combine_multisystems(rejected_clst,
[self.clusters['c24'], self.clusters['c25'], self.clusters['c26']]
)
exp_combs = [
(self.clusters['c21'], self.clusters['c24']),
(self.clusters['c21'], self.clusters['c25']),
(self.clusters['c21'], self.clusters['c24'], self.clusters['c25'])
]
self.assertEqual(combinations, exp_combs)
rejected_clst = RejectedCandidate(self.models['O'],
[self.clusters['c22']],
'fake_reason')
combinations = combine_multisystems([rejected_clst],
[self.clusters['c24'], self.clusters['c25'], self.clusters['c26']]
)
exp_combs = [
(self.clusters['c22'], self.clusters['c26'])
]
self.assertEqual(combinations, exp_combs)
rejected_clst = RejectedCandidate(self.models['O'],
[self.clusters['c21'], self.clusters['c23']],
'fake_reason')
combinations = combine_multisystems([rejected_clst],
[self.clusters['c24'], self.clusters['c25'], self.clusters['c26']]
)
exp_combs = [
(self.clusters['c21'], self.clusters['c23'], self.clusters['c25'])
]
self.assertEqual(combinations, exp_combs)
# print("\n####################################################################")
# for comb in exp_combs:
# print([c.id for c in comb])
# print("==============================")
# for comb in combinations:
# print([c.id for c in comb])
|