File: ModelInterface.cc

package info (click to toggle)
madlib 1.3.0-2.2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 6,912 kB
  • sloc: cpp: 39,850; sh: 10,088; makefile: 476
file content (676 lines) | stat: -rw-r--r-- 21,487 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information. 
// You should have received a copy of these files along with MAdLib. 
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Jean-Francois Remacle, Gaetan Compere
// -------------------------------------------------------------------

// from Common/
#include "MathUtils.h"
#include "MAdMessage.h"
#include "MAdDefines.h"

#include "ModelInterface.h"
#ifdef _HAVE_GMSH_
#include "GmshModel.h"
#else
#include "NullModel.h"
#endif
#include "GM_Iterators.h"
#include "PGList.h"

#include <string.h>

namespace MAd {

  // -------------------------------------------------------------------
  void GM_create(pGModel* model, std::string name)
  { 
    if (*model) delete (*model);
#ifdef _HAVE_GMSH_
    *model = new GmshModel(name);
#else
    *model = new NullModel(name);
#endif
  }

  // -------------------------------------------------------------------
  void GM_delete(pGModel model)
  { 
    if (model) { delete model; model=NULL; }
  }
  
  // -------------------------------------------------------------------
  enum GeoFileFormat {
    FORMAT_MSH,
    FORMAT_GEO,
    FORMAT_STEP,
    FORMAT_BREP,
    FORMAT_IGES,
    FORMAT_UNKNOWN
  };

  // -------------------------------------------------------------------
  std::vector<std::string> SplitFileName(std::string fileName)
  {
    // returns [path, baseName, extension]
    unsigned int idot = fileName.find_last_of('.');
    unsigned int islash = fileName.find_last_of("/\\");
    if(idot == std::string::npos) idot = -1;
    if(islash == std::string::npos) islash = -1;
    std::vector<std::string> s(3);
    if(idot > 0)
      s[2] = fileName.substr(idot);
    if(islash > 0)
      s[0] = fileName.substr(0, islash + 1);
    s[1] = fileName.substr(s[0].size(), fileName.size() - s[0].size() - s[2].size());
    return s;
  }

  // -------------------------------------------------------------------
  GeoFileFormat guessFormatFromExtension(const std::string fileName)
  {
    std::string ext = SplitFileName(fileName)[2];
    if     ( !strcmp(ext.c_str(),".msh" ) )  return FORMAT_MSH;
    if     ( !strcmp(ext.c_str(),".geo" ) )  return FORMAT_GEO;
    if     ( !strcmp(ext.c_str(),".stp" ) )  return FORMAT_STEP;
    if     ( !strcmp(ext.c_str(),".step") )  return FORMAT_STEP;
    if     ( !strcmp(ext.c_str(),".brep") )  return FORMAT_BREP;
    if     ( !strcmp(ext.c_str(),".iges") )  return FORMAT_IGES;
    return FORMAT_UNKNOWN;
  }

  // -------------------------------------------------------------------
  int GM_read(pGModel model, const std::string fileName)
  {
    GeoFileFormat format = guessFormatFromExtension(fileName);
    if ( format == FORMAT_MSH  ) return GM_readFromMSH (model,fileName);
    if ( format == FORMAT_GEO  ) return GM_readFromGEO (model,fileName);
    if ( format == FORMAT_STEP ) return GM_readFromSTEP(model,fileName);
    if ( format == FORMAT_BREP ) return GM_readFromBREP(model,fileName);
    if ( format == FORMAT_IGES ) return GM_readFromIGES(model,fileName);
    MAdMsgSgl::instance().error(__LINE__,__FILE__,
                                "Unknown geo file format %d",format);
    return 0;
  }

  // -------------------------------------------------------------------
  int GM_readFromMSH(pGModel model, const std::string name)
  {
    return (model->readMSH(name));
  }

  // -------------------------------------------------------------------
  int GM_readFromGEO(pGModel model, const std::string name)
  {
    return (model->readGEO(name));
  }

  // -------------------------------------------------------------------
  int GM_readFromSTEP(pGModel model, const std::string name)
  {
    return (model->readSTEP(name));
  }

  // -------------------------------------------------------------------
  int GM_readFromBREP(pGModel model, const std::string name)
  {
    return (model->readBREP(name));
  }

  // -------------------------------------------------------------------
  int GM_readFromIGES(pGModel model, const std::string name)
  {
    return (model->readIGES(name));
  }

  // -------------------------------------------------------------------
  bool GM_physical(const pGModel model)
  {
    return model->physical();
  }

  // -------------------------------------------------------------------
  pGEntity GM_entityByTag(pGModel model, int dim, int tag)
  {
    return model->getEntityByTag(dim,tag);
  }
  pGRegion GM_regionByTag(const pGModel model, int tag)
  {
    return model->getRegionByTag(tag);
  }
  pGFace GM_faceByTag(const pGModel model, int tag)
  {
    return model->getFaceByTag(tag);
  }
  pGEdge GM_edgeByTag(const pGModel model, int tag)
  {
    return model->getEdgeByTag(tag);
  }
  pGVertex GM_vertexByTag(const pGModel model, int tag)
  {
    return model->getVertexByTag(tag);
  }

  // -------------------------------------------------------------------
  int GM_numVertices(const pGModel model)
  {
    return model->getNumVertices();
  }
  int GM_numEdges(const pGModel model)
  {
    return model->getNumEdges();
  }
  int GM_numFaces(const pGModel model)
  {
    return model->getNumFaces();
  }
  int GM_numRegions(const pGModel model)
  {
    return model->getNumRegions();
  }

  // -------------------------------------------------------------------
  GRIter GM_regionIter(pGModel model)
  {
    return new GM_RegionIterator(model);
  }
  GFIter GM_faceIter(pGModel model)
  {
    return new GM_FaceIterator(model);
  }
  GEIter GM_edgeIter(pGModel model)
  {
    return new GM_EdgeIterator(model);
  }
  GVIter GM_vertexIter(pGModel model)
  {
    return new GM_VertexIterator(model);
  }

  pGRegion GRIter_next(GRIter iter) { return iter->next(); }
  pGFace   GFIter_next(GFIter iter) { return iter->next(); }
  pGEdge   GEIter_next(GEIter iter) { return iter->next(); }
  pGVertex GVIter_next(GVIter iter) { return iter->next(); }

  void GRIter_delete(GRIter iter) { delete (iter); }
  void GFIter_delete(GFIter iter) { delete (iter); }
  void GEIter_delete(GEIter iter) { delete (iter); }
  void GVIter_delete(GVIter iter) { delete (iter); }

  void GRIter_reset(GRIter iter) { iter->reset(); }
  void GFIter_reset(GFIter iter) { iter->reset(); }
  void GEIter_reset(GEIter iter) { iter->reset(); }
  void GVIter_reset(GVIter iter) { iter->reset(); }

  // -------------------------------------------------------------------
  int GEN_tag(const pGEntity ent)
  {
    return ent->tag();
  }

  // -------------------------------------------------------------------
  int GEN_type(const pGEntity ent)
  {
    return ent->dim();
  }

  // -------------------------------------------------------------------
  void GEN_setPhysical(pGEntity ent, int dim, int tag)
  {
    ent->setPhysical(dim,tag);
  }

  // -------------------------------------------------------------------
  int GEN_physTag(const pGEntity ent)
  {
    return ent->pTag();
  }

  // -------------------------------------------------------------------
  int GEN_physDim(const pGEntity ent)
  {
    return ent->pDim();
  }

#ifdef _HAVE_GMSH_
  // -------------------------------------------------------------------
  std::list<pGEntity> GEN_closure(const pGEntity pGE)
  {
    std::list<pGEntity> theList;

    int type = GEN_type(pGE);
    switch (type) {
    case 0: break;
    case 1: {
      std::list<pGVertex> vList = GE_vertices((pGEdge)pGE);
      std::list<pGVertex>::const_iterator vIter = vList.begin();
      for (; vIter != vList.end(); vIter++) {
        theList.push_back(*vIter);
      }
      break;
    }
    case 2: {
      std::list<pGEdge> eList = GF_edges((pGFace)pGE);
      std::list<pGEdge>::const_iterator eIter = eList.begin();
      for (; eIter != eList.end(); eIter++) {
        theList.push_back(*eIter);
      }
      break;
    }
    case 3: {
      std::list<pGFace> fList = GR_faces((pGRegion)pGE);
      std::list<pGFace>::const_iterator fIter = fList.begin();
      for (; fIter != fList.end(); fIter++) {
        theList.push_back(*fIter);
      }
      break;
    }
    }

    return theList;
  }

  // -------------------------------------------------------------------
  std::list<pGFace> GR_faces(const pGRegion pGR)
  {
    return pGR->faces();
  }

  // -------------------------------------------------------------------
  int GF_numRegions(const pGFace f)
  {
    return f->numRegions();
  }

  // -------------------------------------------------------------------
  std::list<pGEdge> GF_edges(const pGFace pGF)
  {
    return pGF->edges();
  }

  // -------------------------------------------------------------------
  //! Computes the parameter location of xyz in the surface. 
  //! Returns false if xyz is not in the surface.
  bool GF_getParams(const pGFace pGF, const double xyz[3], 
                    double params[2])
  {
    //   SPoint2 sP = pGF->parFromPoint(SPoint3(xyz));
    //   params[0] = sP.x();
    //   params[1] = sP.y();

    pGF->XYZtoUV( xyz[0], xyz[1], xyz[2],
                  params[0], params[1], 1.);

    //    throw;

    // a test should be done to check that xyz was on the surface

    return true;
  }

  // -------------------------------------------------------------------
  //! Computes the coordinates of the point on the surface closest to xyz
  void GF_closestPoint(const pGFace pGF, const double xyz[3],
                       const double initGuess[2], double xyzOnF[3])
  {
    //   GPoint gP = pGF->closestPoint( SPoint3(xyz), initGuess );
    //   xyzOnF[0] = gP.x();
    //   xyzOnF[1] = gP.y();
    //   xyzOnF[2] = gP.z();
    throw;
  }

  // -------------------------------------------------------------------
  void GF_xyz(const pGFace pGF, double u, double v, double xyz[3])
  {
    GPoint gP = pGF->point(u,v);
    xyz[0] = gP.x();
    xyz[1] = gP.y();
    xyz[2] = gP.z();
  }

  // -------------------------------------------------------------------
  //! Gets the curvature of the surface computed as the divergence of its normal
  //! Result is bounded by cMaxBound. NaN curvatures are turned into cMaxBound.
  double GF_curvatureDiv(const pGFace surface, const double u[2], 
                         double cMaxBound)
  {
    SPoint2 param(u[0],u[1]);
    double curv = surface->curvatureDiv(param);
    if ( isnan(curv) ) {
      MAdMsgSgl::instance().warning(__LINE__,__FILE__,"NaN curvature");
      curv = cMaxBound;
    }
    return std::min(curv,cMaxBound);
  }

  // -------------------------------------------------------------------
  //! Compute the min and max curvatures and the corresponding directions.
  //! Returns the max curvature.
  //! Min and max curvatures are bounded by cMaxBound. 
  //! NaN curvatures are turned into cMaxBound.
  double GF_curvatures(const pGFace surface, const double u[2],
                       double dirMax[3], double dirMin[3],
                       double *curvMax, double *curvMin, 
                       double cMaxBound)
  {
    SPoint2 param(u[0],u[1]);
    SVector3 dirMaxTmp = SVector3();
    SVector3 dirMinTmp = SVector3();

    surface->curvatures(param, &dirMaxTmp, &dirMinTmp, curvMax, curvMin);

    dirMax[0] = dirMaxTmp.x();
    dirMax[1] = dirMaxTmp.y();
    dirMax[2] = dirMaxTmp.z();
    if ( ( dotProd(dirMax,dirMax) <= MAdTOL ) ||
         ( isnan(dirMax[0]) || isnan(dirMax[1]) || isnan(dirMax[2]) ) )
      {
        MAdMsgSgl::instance().warning(__LINE__,__FILE__,
                                      "NaN direction for maximum curvature");
        dirMax[0] = 0.36436431;
        dirMax[1] = 0.76356436;
        dirMax[2] = 0.96983673;
      }
    
    dirMin[0] = dirMinTmp.x();
    dirMin[1] = dirMinTmp.y();
    dirMin[2] = dirMinTmp.z();
    if ( ( dotProd(dirMin,dirMin) <= MAdTOL ) ||
         ( isnan(dirMin[0]) || isnan(dirMin[1]) || isnan(dirMin[2]) ) )
      {
        MAdMsgSgl::instance().warning(__LINE__,__FILE__,
                                      "Inconsistent direction for minimum curvature (u,v)=(%f,%f), direction: %f, %f, %f, curvature: %f",
                                      u[0],u[1],dirMin[0],dirMin[1],dirMin[2],*curvMin);
        double tmp[3] = { 0.86684859, 0.69576964, 0.39876864 };
        crossProd(tmp,dirMax,dirMin);
      }
    
    if ( isnan(*curvMax) ) {
      MAdMsgSgl::instance().warning(__LINE__,__FILE__,"NaN maximum curvature");
      *curvMax = cMaxBound;
    }
    *curvMax = std::min(*curvMax,cMaxBound);
    if ( isnan(*curvMin) ) {
      MAdMsgSgl::instance().warning(__LINE__,__FILE__,"NaN minimum curvature");
      *curvMin = cMaxBound;
    }
    *curvMin = std::min(*curvMin,cMaxBound);

    return *curvMax;
  }

  // -------------------------------------------------------------------
  //! Computes the parametric coordinates of the point of an edge on 
  //! a geodesic of the surface. t is the location on the edge ( 0 <= t <= 1 ).
  void GF_centerOnGeodesic(const pGFace face, double t, 
                           const double e[2][2], double c[2])
  {
    SPoint2 pt1(e[0][0],e[0][1]);
    SPoint2 pt2(e[1][0],e[1][1]);
    SPoint2 res = face->geodesic(pt1,pt2,t);
    c[0] = res.x();
    c[1] = res.y();
  }

  // -------------------------------------------------------------------
  std::list<pGVertex> GE_vertices(const pGEdge pGE)
  {
    return pGE->vertices();
  }

  // -------------------------------------------------------------------
  //! Computes the coordinates of the point on the line closest to xyz
  void GE_closestPoint(const pGEdge pGE, const double xyz[3], 
                       double xyzOnE[3])
  {
    //   GPoint gP = pGE->closestPoint( SPoint3(xyz) );
    //   xyzOnE[0] = gP.x();
    //   xyzOnE[1] = gP.y();
    //   xyzOnE[2] = gP.z();
    throw;
  }

  // -------------------------------------------------------------------
  void GE_xyz(const pGEdge pGE, double u, double xyz[3])
  {
    GPoint gP = pGE->point(u);
    xyz[0] = gP.x();
    xyz[1] = gP.y();
    xyz[2] = gP.z();
  }

  // -------------------------------------------------------------------
  //! Given an edge which is a seam of the face, and a point of 
  //! the edge with parametric coordinate uOnE on the edge, 
  //! find the parametric coordinates of the point on the face.
  //! uClose are the parametric coordinates of a close point of 
  //! face used to determine the direction for the parametrization.
  void GE_reparamOnFace(const pGEdge edge, const pGFace face, 
                        double uOnE, double uOnF[2], double uClose[2])
  {
    //   assert( edge->isSeam(face) );

    SPoint2 pt = edge->reparamOnFace(face, uOnE, 0);
    uOnF[0] = pt.x();
    uOnF[1] = pt.y();

    if ( uClose )
      {
        double dist = 
          ( uClose[0] - pt.x() ) * ( uClose[0] - pt.x() ) +
          ( uClose[1] - pt.y() ) * ( uClose[1] - pt.y() );

        SPoint2 pt2 = edge->reparamOnFace(face, uOnE, 1);
        double dist2 = 
          ( uClose[0] - pt2.x() ) * ( uClose[0] - pt2.x() ) +
          ( uClose[1] - pt2.y() ) * ( uClose[1] - pt2.y() );

        if ( dist2 < dist ) {
          uOnF[0] = pt2.x();
          uOnF[1] = pt2.y();
        }
      }
  }

  // -------------------------------------------------------------------
  //! true if the edge is a seam for the given face.
  bool GE_isSeam(const pGEdge edge, const pGFace face)
  {
    return edge->isSeam(face);
  }

  // -------------------------------------------------------------------
  //! gets the curvature of the line at that point bounded by cMaxBound
  double GE_curvature(const pGEdge line, double u, double cMaxBound)
  {
    double curv = line->curvature(u);
    if ( isnan(curv) ) {
      MAdMsgSgl::instance().warning(__LINE__,__FILE__,"NaN curvature");
      curv = cMaxBound;
    }
    return std::min(curv,cMaxBound);
  }

  // -------------------------------------------------------------------
  //! returns a list of the lines including the vertex
  std::list<pGEdge> GV_edges(const pGVertex pGV)
  {
    return pGV->edges();
  }

  // -------------------------------------------------------------------
  //! Given a geometric vertex which is on the face, find the parametric 
  //! coordinates of the vertex on the face.
  //! uClose are the parametric coordinates of a close point of 
  //! face used to determine the direction for the parametrization.
  void GV_reparamOnFace(const pGVertex vertex, const pGFace face, 
                        double uOnF[2], double uClose[2])
  {
    SPoint2 pt = vertex->reparamOnFace(face, 0);
    uOnF[0] = pt.x();
    uOnF[1] = pt.y();

    if ( uClose )
      {
        double dist = 
          ( uClose[0] - pt.x() ) * ( uClose[0] - pt.x() ) +
          ( uClose[1] - pt.y() ) * ( uClose[1] - pt.y() );

        SPoint2 pt2 = vertex->reparamOnFace(face, 1);
        double dist2 = 
          ( uClose[0] - pt2.x() ) * ( uClose[0] - pt2.x() ) +
          ( uClose[1] - pt2.y() ) * ( uClose[1] - pt2.y() );

        if ( dist2 < dist ) {
          uOnF[0] = pt2.x();
          uOnF[1] = pt2.y();
        }
      }
  }

  // -------------------------------------------------------------------
  //! Given a geometric vertex which is on the edge, find the parametric 
  //! coordinates of the vertex on the edge.
  //! uClose is the parametric coordinate of a close point of 
  //! edge used to determine the direction for the parametrization.
  void GV_reparamOnEdge(const pGVertex vertex, const pGEdge edge, 
                        double * uOnE, double uClose)
  {
    Range<double> range = edge->parBounds(0);

    if ( uClose >= 0. && 
         vertex == edge->getBeginVertex() && 
         vertex == edge->getEndVertex() ) {
      *uOnE = range.low();
      double dist  = ( uClose - *uOnE ) * ( uClose - *uOnE );
      double dist2 = ( uClose - range.high() ) * ( uClose - range.high() );
      if ( dist2 < dist ) *uOnE = range.high();
      return;
    }

    if ( vertex == edge->getBeginVertex() ) { *uOnE = range.low();  return; }
    if ( vertex == edge->getEndVertex() )   { *uOnE = range.high(); return; }

    MAdMsgSgl::instance().error(__LINE__,__FILE__,
                                "GVertex not in the closure of the GEdge");
  }

  // -------------------------------------------------------------------
  //! Return true if the vertex is on a seam of the given face
  bool GV_isOnSeam(const pGVertex vert, const pGFace face)
  {
    return vert->isOnSeam(face);
  }

#else

  // -------------------------------------------------------------------
  void GF_centerOnGeodesic(const pGFace face, double t,
                           const double e[2][2], double c[2])
  {
    MAdMsgSgl::instance().error(__LINE__,__FILE__,
                                "Using geodesics requires Gmsh");
  }

#endif

  // -------------------------------------------------------------------

  // -------------------------------------------------------------------
  // PGList functions
  // -------------------------------------------------------------------

  // -------------------------------------------------------------------
  PGList * PGList_new()
  {
    return new PGList();
  }

  // -------------------------------------------------------------------
  void PGList_delete(PGList * lst)
  {
    if (lst) delete lst;
    lst = NULL;
  }

  // -------------------------------------------------------------------
  void PGList_clear(PGList * lst)
  {
    lst->clear();
  }

  // -------------------------------------------------------------------
  PGList * PGList_appUnique(PGList * lst, pGEntity ent)
  {
    for ( unsigned int i=0; i<lst->entities.size(); i++ ) {
      if ( lst->entities[i] == ent ) return lst;
    }
    lst->entities.push_back(ent);
    return lst;
  }

  // -------------------------------------------------------------------
  PGList * PGList_appPGListUnique(PGList * lst, PGList * source)
  {
    for ( unsigned int iSrc=0; iSrc<source->entities.size(); iSrc++ ) {
      PGList_appUnique(lst,source->entities[iSrc]);
    }
    return lst;
  }

  // -------------------------------------------------------------------
  PGList * PGList_append(PGList * lst, pGEntity ent)
  {
    lst->entities.push_back(ent);
    return lst;
  }

  // -------------------------------------------------------------------
  int PGList_size(PGList * lst)
  {
    return lst->entities.size();
  }

  // -------------------------------------------------------------------
  pGEntity PGList_item(PGList * lst, int i)
  {
    return lst->entities[i];
  }

  // -------------------------------------------------------------------
  pGEntity PGList_next(PGList * lst, void **restart)
  {
    if( *(int*)(restart) >= (int)lst->entities.size() ) return NULL;
    return lst->entities[(*(int*)(restart))++];
  }

  // -------------------------------------------------------------------
  int PGList_inList(PGList * lst, pGEntity ent)
  {
    for ( unsigned int i=0; i<lst->entities.size(); i++ ) {
      if ( lst->entities[i] == ent ) return 1;
    }
    return 0;
  }

  // -------------------------------------------------------------------
  void PGList_remItem(PGList * lst, pGEntity ent)
  {
    std::vector<pGEntity>::iterator eIter = lst->entities.begin();
    for (; eIter != lst->entities.end() ; eIter++) {
      if ( *eIter == ent ) lst->entities.erase(eIter);
    }
  }

  // -------------------------------------------------------------------


}