1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information.
// You should have received a copy of these files along with MAdLib.
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Olivier Pierard, Gaetan Compere, Jean-Francois Remacle
// -------------------------------------------------------------------
#include "EdgeSplitOp.h"
#include "OperatorTools.h"
namespace MAd {
// -------------------------------------------------------------------
bool edgeSplitOp::checkConstraints() const
{
if ( EN_constrained((pEntity)edge) ) return false;
return true;
}
// -------------------------------------------------------------------
bool edgeSplitOp::checkGeometry()
{
return true;
}
// -------------------------------------------------------------------
bool edgeSplitOp::evaluateShapes()
{
pPList eRegs = E_regions(edge);
// 2D case
if ( PList_size(eRegs) == 0 ) {
bool flag = evaluateShapes2D();
PList_delete(eRegs);
return flag;
}
// 3D case
else {
double worstShape = MAdBIG;
void * temp = 0;
while ( pRegion region = (pRegion)PList_next(eRegs,&temp) ) {
pPList rVerts = R_vertices(region);
// evaluate the two regions resulting from the split
for( int iR=0; iR<2; iR++ ) {
pVertex eV = E_vertex(edge,iR);
pMSize rSizes[4] = { NULL, NULL, NULL, NULL };
double rCoords[4][3];
pVertex pV = NULL;
void * iter = NULL;
for( int iRV=0; (pV=(pVertex)PList_next(rVerts,&iter) ); iRV++ ) {
if( pV == eV ) {
rSizes[iRV] = xyzSize;
rCoords[iRV][0] = xyz[0];
rCoords[iRV][1] = xyz[1];
rCoords[iRV][2] = xyz[2];
}
else {
rSizes[iRV] = sizeField->findSize(pV);
V_coord(pV,rCoords[iRV]);
}
}
double rShape;
if( !mqm.getElementEvaluator()->XYZ_R_shape(rCoords,rSizes,&rShape) ) {
PList_delete (eRegs);
PList_delete (rVerts);
return false;
}
if( worstShape > rShape ) worstShape = rShape;
}
PList_delete(rVerts);
}
results->setWorstShape(worstShape);
}
PList_delete(eRegs);
return true;
}
// -------------------------------------------------------------------
bool edgeSplitOp::evaluateShapes2D()
{
double worstShape = MAdBIG;
pPList eFaces = E_faces(edge);
void * temp = NULL;
while ( pFace face = (pFace)PList_next(eFaces,&temp) ) {
pPList fVerts = F_vertices(face,1);
// evaluate the two faces resulting from the split
for( int iF=0; iF<2; iF++ ) {
pVertex eV = E_vertex(edge,iF);
pMSize fSizes[3] = { NULL, NULL, NULL };
double fCoords[3][3];
pVertex pV;
void * iter = NULL;
for( int iFV=0; (pV=(pVertex)PList_next(fVerts,&iter)); iFV++ ) {
if( pV == eV ) {
fSizes[iFV] = xyzSize;
fCoords[iFV][0] = xyz[0];
fCoords[iFV][1] = xyz[1];
fCoords[iFV][2] = xyz[2];
}
else {
fSizes[iFV] = sizeField->findSize(pV);
V_coord(pV,fCoords[iFV]);
}
}
double fShape;
if( !mqm.getElementEvaluator()->XYZ_F_shape(fCoords,fSizes,0,&fShape) ) {
PList_delete (eFaces);
PList_delete (fVerts);
return false;
}
if( worstShape > fShape ) worstShape = fShape;
}
PList_delete(fVerts);
}
PList_delete(eFaces);
results->setWorstShape(worstShape);
return true;
}
// -------------------------------------------------------------------
void edgeSplitOp::evaluateLengths() const
{
pVertex verts[2];
double vCoords[2][3];
pMSize vSizes[2] = {NULL,NULL};
for( int iV=0; iV<2; iV++ ) {
verts[iV] = E_vertex(edge,iV);
V_coord(verts[iV],vCoords[iV]);
vSizes[iV] = sizeField->findSize(verts[iV]);
}
pMSize newSize = sizeField->getSizeOnEntity((pEntity)edge,xyz);
double lSqMax = sizeField->SF_XYZ_lengthSq(xyz, vCoords[0],
newSize, vSizes[0]);
double lSqMin = lSqMax;
double lSq = sizeField->SF_XYZ_lengthSq(xyz, vCoords[1],
newSize, vSizes[1]);
if( lSq > lSqMax ) lSqMax = lSq;
if( lSq < lSqMin ) lSqMin = lSq;
for( int i=0; i<E_numFaces(edge); i++ ) {
pVertex oppV = F_edOpVt(E_face(edge,i), edge);
pMSize oppSize = sizeField->findSize(oppV);
double xyzOpp[3];
V_coord(oppV,xyzOpp);
lSq = sizeField->SF_XYZ_lengthSq(xyz, xyzOpp,
newSize, oppSize);
if( lSq > lSqMax ) lSqMax = lSq;
if( lSq < lSqMin ) lSqMin = lSq;
}
if( newSize ) delete newSize;
results->setMaxLenSq(lSqMax);
results->setMinLenSq(lSqMin);
}
// -------------------------------------------------------------------
void edgeSplitOp::getCavity(pPList * cavity) const
{
if ( dim == 3 ) *cavity = E_regions(edge);
else *cavity = E_faces(edge);
}
// -------------------------------------------------------------------
void edgeSplitOp::apply()
{
E_split(mesh,edge,xyz,u);
HistorySgl::instance().add((int)type(),OPERATOR_APPLY,1);
}
// -------------------------------------------------------------------
}
|