1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information.
// You should have received a copy of these files along with MAdLib.
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Gaetan Compere, Jean-Francois Remacle
// -------------------------------------------------------------------
#include "AnisoMeshSize.h"
#include "MathUtils.h"
#include "MAdMessage.h"
#include "MAdDefines.h"
#include "MeshParametersManager.h"
#include <math.h>
#include <iostream>
using std::string;
namespace MAd {
// -------------------------------------------------------------------
AnisoMeshSize::AnisoMeshSize(double dirs[3][3], double _h[3]):
MeshSizeBase()
{
if( _h[0] <= 0. || _h[1] <= 0. || _h[2] <= 0. ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Negative size(s): %f %f %f",
_h[0], _h[1], _h[2]);
}
double t1[3], t2[3], t3[3];
double l1,l2,l3;
// sort the sizes from lowest to highest and fill first direction (GCRemark: not useful)
int hMin = indexOfMin(_h[0], _h[1], _h[2]);
l1 = 1. / (_h[hMin] * _h[hMin]);
double normInv = 1. / sqrt ( dirs[hMin][0] * dirs[hMin][0] +
dirs[hMin][1] * dirs[hMin][1] +
dirs[hMin][2] * dirs[hMin][2] );
for (int i=0; i<3; i++) t1[i] = dirs[hMin][i] * normInv;
hMin++;
if( _h[(hMin+1)%3] > _h[(hMin)%3] )
{
l2 = 1. / (_h[hMin%3] * _h[hMin%3]);
l3 = 1. / (_h[(hMin+1)%3] * _h[(hMin+1)%3]);
hMin = hMin%3;
}
else
{
l2 = 1. / (_h[(hMin+1)%3] * _h[(hMin+1)%3]);
l3 = 1. / (_h[hMin%3] * _h[hMin%3]);
hMin = (hMin+1)%3;
}
// project dir 1 so that it is perpendicular to dir 0
double cosa = dotProd(t1,dirs[hMin]);
double vec[3];
for( int i=0; i<3; i++ ) vec[i] = dirs[hMin][i] - cosa * t1[i];
normInv = 1. / sqrt ( vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2] );
for (int i=0; i<3; i++) t2[i] = vec[i] * normInv;
// find last dir as the direction orthogonal to the two previous ones
crossProd(t1,t2,t3);
// build the metric
M = MAdMetric(l1,l2,l3,t1,t2,t3);
}
// -------------------------------------------------------------------
AnisoMeshSize::AnisoMeshSize(double dir[3], double hDir, double hTg):
MeshSizeBase()
{
if( hDir <= 0. || hTg <= 0. ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Negative size(s): %f %f",
hDir, hTg);
}
double e[3][3];
double len[3];
// see if 'dir' is the direction of the minimal length
int iDir = 0;
if ( hDir > hTg ) iDir = 2;
// set the 'dir' direction and its length
normalizeVec(dir,e[iDir]);
len[iDir] = 1. / ( hDir * hDir );
// set other sizes in the right order
len[(iDir+1)%3] = 1. / ( hTg * hTg );
len[(iDir+2)%3] = len[(iDir+1)%3];
// find a perpendicular direction to dir
double dummy[3];
dummy[0] = 2. * ( e[iDir][0] + 1.3654364 );
dummy[1] = 3. * ( e[iDir][1] + 3.1368136 );
dummy[2] = 5. * ( e[iDir][2] + 7.3683686 );
normalizeVec(dummy,dummy);
double cosa = dotProd(e[iDir],dummy);
for( int i=0; i<3; i++ ) dummy[i] -= cosa * e[iDir][i];
normalizeVec(dummy,e[(iDir+1)%3]);
// find last dir as the direction orthogonal to the two previous ones
crossProd(e[iDir],e[(iDir+1)%3],e[(iDir+2)%3]);
// build the metric
M = MAdMetric(len[0],len[1],len[2],e[0],e[1],e[2]);
}
// -------------------------------------------------------------------
AnisoMeshSize::AnisoMeshSize(double h):
MeshSizeBase()
{
M = MAdMetric( 1./(h*h) );
}
// -------------------------------------------------------------------
AnisoMeshSize::AnisoMeshSize(const AnisoMeshSize &pm):
MeshSizeBase()
{
M = pm.M;
}
// -------------------------------------------------------------------
MeshSizeType AnisoMeshSize::getType() const
{
return ANISOTROPIC;
}
// -------------------------------------------------------------------
void AnisoMeshSize::intersect(const pMSize pMS1, const pMSize pMS2)
{
M = intersection(pMS1->getMetric(),pMS2->getMetric());
}
// -------------------------------------------------------------------
void AnisoMeshSize::interpolate(const pMSize pMS0, const pMSize pMS1,
double param)
{
M = interpolation(pMS0->getMetric(),pMS1->getMetric(),param);
}
// -------------------------------------------------------------------
void AnisoMeshSize::interpolate(const pMSize pMS0, const pMSize pMS1,
const pMSize pMS2, double u, double v)
{
M = interpolation(pMS0->getMetric(), pMS1->getMetric(),
pMS2->getMetric(), u, v);
}
// -------------------------------------------------------------------
void AnisoMeshSize::interpolate(const pMSize pMS0, const pMSize pMS1,
const pMSize pMS2, const pMSize pMS3,
double u, double v, double w)
{
M = interpolation(pMS0->getMetric(), pMS1->getMetric(),
pMS2->getMetric(), pMS3->getMetric(),
u, v, w);
}
// -------------------------------------------------------------------
double AnisoMeshSize::size(int i) const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,true);
double s = 1. / sqrt( S(i) );
if ( isnan(s) ) return MeshParametersManagerSgl::instance().getBigLength();
return s;
}
// -------------------------------------------------------------------
void AnisoMeshSize::sizes(double _h[3]) const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,true);
for (int i=0; i<3; i++) {
_h[i] = ( 1. / sqrt( S(i) ) );
if ( isnan(_h[i]) ) _h[i] = MeshParametersManagerSgl::instance().getBigLength();
}
}
// -------------------------------------------------------------------
double AnisoMeshSize::direction(int i, double dir[3]) const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,true); // each column of V is a direction, S gives corresponding 1/h^2
for (int iC=0; iC<3; iC++) dir[iC] = V(iC,i);
double s = 1. / sqrt( S(i) );
if ( isnan(s) ) return MeshParametersManagerSgl::instance().getBigLength();
return s;
}
// -------------------------------------------------------------------
void AnisoMeshSize::scale(int dir, double factor)
{
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Not implemented");
}
// -------------------------------------------------------------------
void AnisoMeshSize::scale(double factor)
{
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Not implemented");
}
// -------------------------------------------------------------------
double AnisoMeshSize::getMeanLength() const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,false);
double mean = 0.;
for (int i=0; i<3; i++) mean += 1. / sqrt( S(i) );
return ( MAdTHIRD * mean );
}
// -------------------------------------------------------------------
double AnisoMeshSize::getMinLength() const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,false);
int i = indexOfMax(S(0),S(1),S(2));
return ( 1. / sqrt( S(i) ) );
}
// -------------------------------------------------------------------
double AnisoMeshSize::getMaxLength() const
{
doubleMatrix V = doubleMatrix(3,3);
doubleVector S = doubleVector(3);
M.eig(V,S,false);
int i = indexOfMin(S(0),S(1),S(2));
return ( 1. / sqrt( S(i) ) );
}
// -------------------------------------------------------------------
// get the square of the norm in the metric
double AnisoMeshSize::normSq(const double vec[3]) const
{
return dot(vec,M,vec);
}
// -------------------------------------------------------------------
// get the square of desired edge length along 'vec'
double AnisoMeshSize::lengthSqInDir(const double vec[3]) const
{
double tmp[3];
normalizeVec(vec,tmp);
return ( 1. / dot(tmp,M,tmp) );
}
// -------------------------------------------------------------------
// get the cosine of the angle with the direction of the minimal size
double AnisoMeshSize::angleWithDir0(const double dir[3]) const
{
double tmp[3];
normalizeVec(dir,tmp);
double dir0[3];
direction(0,dir0);
normalizeVec(dir0,dir0);
return dotProd(tmp,dir0);
}
// -------------------------------------------------------------------
void AnisoMeshSize::print(string name) const
{
std::cout<<"Printing AnisoMeshSize \'"<<name<<"\' ("<<this<<")\n";
M.print("Mesh size metric");
}
// -------------------------------------------------------------------
}
|