1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information.
// You should have received a copy of these files along with MAdLib.
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Gaetan Compere, Jean-Francois Remacle
// -------------------------------------------------------------------
#include "LocalSizeField.h"
#include "IsoMeshSize.h"
#include "AnisoMeshSize.h"
#include "MathUtils.h"
#include "MAdMessage.h"
#include "MeshParametersManager.h"
#include "MAdTimeManager.h"
#include "MAdResourceManager.h"
#include "DistanceFunction.h"
#include "MAdStringFieldEvaluator.h"
#include <iostream>
#include <stdlib.h>
using std::cerr;
using std::cout;
using std::endl;
using std::set;
using std::string;
namespace MAd {
// -------------------------------------------------------------------
LocalSizeField::LocalSizeField(pMesh m, string name, bool _distToFaces):
SizeFieldBase(name), mesh(m), geoDim(-1),
isotropic(true), radius(-1.), sizeN(""), sizeT(""),
sEvalN(NULL), sEvalT(NULL),
distToFaces(_distToFaces), dFct(mesh, distToFaces),
limit(false), tgSizeLimitCoef(MAdBIG), maxCurv(MAdBIG)
{
#ifdef PARALLEL
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Local size fields not supported in parallel");
#endif
}
// -------------------------------------------------------------------
LocalSizeField::LocalSizeField(const LocalSizeField& _lsf): dFct(NULL,false)
{
throw;
}
// -------------------------------------------------------------------
LocalSizeField::~LocalSizeField()
{
if ( sEvalN ) delete sEvalN;
if ( sEvalT ) delete sEvalT;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
void LocalSizeField::addGeometricEntity(int type, int tag)
{
// check that the new entity has the same dimension as the previous ones
if ( geoDim < 0 ) geoDim = type;
else if ( geoDim != type ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Trying to insert a geo entity with dim %d while another entity with dim %d was previously inserted",
type, geoDim);
}
geomEntities.insert( GM_entityByTag(M_model(mesh),type,tag) );
}
// -------------------------------------------------------------------
void LocalSizeField::setIsoSize(double _radius, string _sizeN)
{
isotropic = true;
radius = _radius;
sizeN = _sizeN;
sizeT = "";
if( sEvalN ) delete sEvalN;
sEvalN = new MAdStringFieldEvaluator(1,sizeN.c_str());
}
// -------------------------------------------------------------------
void LocalSizeField::setAnisoSize(double _radius, string _sizeN,
string _sizeT)
{
isotropic = false;
radius = _radius;
sizeN = _sizeN;
sizeT = _sizeT;
if( sEvalN ) delete sEvalN;
if( sEvalT ) delete sEvalT;
sEvalN = new MAdStringFieldEvaluator(1,sizeN.c_str());
sEvalT = new MAdStringFieldEvaluator(1,sizeT.c_str());
}
// -------------------------------------------------------------------
void LocalSizeField::setCurvatureLimiter(double onTgSize, double _maxCurv)
{
limit = true;
tgSizeLimitCoef = onTgSize;
maxCurv = _maxCurv;
}
// -------------------------------------------------------------------
pMSize LocalSizeField::getSize(const pVertex pv) const
{
// get the distance
double dist = dFct.getDistance(pv);
double dxyz[3] = {0., 0., 0.}; dxyz[0] = dist;
// get the time
double time = MAdTimeManagerSgl::instance().getTime();
// get the sizes for this distance at this time
double sizeN_d, sizeT_d;
sEvalN->eval(dxyz,time,&sizeN_d);
if ( !isotropic ) sEvalT->eval(dxyz,time,&sizeT_d);
pMSize theSize;
if (dist >= radius) {
theSize = new IsoMeshSize (MeshParametersManagerSgl::instance().getBigLength());
}
else {
if ( isotropic ) {
theSize = new IsoMeshSize( sizeN_d );
}
else {
double nor[3];
if ( !dFct.getGradient(pv,nor) ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Gradient not available for vertex %p",pv);
}
if ( fabs(nor[0]) <= MAdTOL && fabs(nor[1]) <= MAdTOL && fabs(nor[2]) <= MAdTOL ) {
theSize = new IsoMeshSize( sizeN_d );
}
else {
if ( limit )
{
double curvR;
if ( !dFct.getCurvature(pv,&curvR) ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Curvature not available for vertex %p",pv);
}
if ( curvR > MAdTOL ) {
curvR = std::min(curvR,maxCurv);
curvR = 1. / curvR;
// limit the tangent size regarding the curvature radius of the wall
sizeT_d = std::min(sizeT_d, tgSizeLimitCoef * curvR);
sizeT_d = std::max(sizeT_d,sizeN_d);
}
}
theSize = new AnisoMeshSize( nor, sizeN_d, sizeT_d );
}
}
}
return theSize;
}
// -------------------------------------------------------------------
pMSize LocalSizeField::getSizeOnEntity(const pEntity pe,
const double xyz[3]) const
{
// get the distance
double dist = dFct.computeDistance(xyz);
double dxyz[3] = {0., 0., 0.}; dxyz[0] = dist;
// get the time
double time = MAdTimeManagerSgl::instance().getTime();
// get the sizes for this distance at this time
double sizeN_d, sizeT_d;
sEvalN->eval(dxyz,time,&sizeN_d);
if ( !isotropic ) sEvalT->eval(dxyz,time,&sizeT_d);
pMSize theSize;
if (dist > radius) {
theSize = new IsoMeshSize (MeshParametersManagerSgl::instance().getBigLength());
}
else {
if ( isotropic ) {
theSize = new IsoMeshSize( sizeN_d );
}
else {
double nor[3];
if ( !dFct.getGradientOnEntity(pe,xyz,nor) ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Gradient not available for entity %p",pe);
}
if ( fabs(nor[0]) <= MAdTOL && fabs(nor[1]) <= MAdTOL && fabs(nor[2]) <= MAdTOL ) {
theSize = new IsoMeshSize( sizeN_d );
}
else {
if ( limit )
{
double curvR;
if ( !dFct.getCurvatureOnEntity(pe,xyz,&curvR) ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Curvature not available for entity %p",pe);
}
if ( curvR > MAdTOL ) {
curvR = std::min(curvR,maxCurv);
curvR = 1. / curvR;
// limit the tangent size regarding the curvature radius of the wall
sizeT_d = std::min(sizeT_d, tgSizeLimitCoef * curvR);
sizeT_d = std::max(sizeT_d,sizeN_d);
}
}
theSize = new AnisoMeshSize( nor, sizeN_d, sizeT_d );
}
}
}
return theSize;
}
// -------------------------------------------------------------------
// Length squared computation
// -------------------------------------------------------------------
// -------------------------------------------------------------------
double LocalSizeField::SF_VV_lengthSq(const pVertex pV0, const pVertex pV1) const
{
double xyz[2][3];
V_coord(pV0,xyz[0]);
V_coord(pV1,xyz[1]);
pMSize pS[2];
pS[0] = getSize(pV0);
pS[1] = getSize(pV1);
double lSq = SF_XYZ_lengthSq(xyz[0],xyz[1],pS[0],pS[1]);
if ( pS[0] ) delete pS[0];
if ( pS[1] ) delete pS[1];
return lSq;
}
// -------------------------------------------------------------------
double LocalSizeField::SF_XYZ_lengthSq(const double xyz0[3],
const double xyz1[3],
const pMSize pS0,
const pMSize pS1) const
{
if( pS0 )
{
double e[3];
diffVec(xyz0,xyz1,e);
double lenSq0 = pS0->normSq(e);
if ( pS1 )
{
double lenSq1 = pS1->normSq(e);
return sqrt(lenSq0*lenSq1);
}
else return lenSq0;
}
else {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"No size defined");
}
return 0.;
}
// -------------------------------------------------------------------
// Area squared computation
// -------------------------------------------------------------------
double LocalSizeField::SF_F_areaSq(const pFace face) const
{
double area = 0.;
double xyz[3][3];
F_coordP1(face,xyz);
void * temp = 0;
pPList fVerts = F_vertices(face,1);
while( pVertex pV = (pVertex)PList_next(fVerts,&temp) )
{
pMSize pS = getSize(pV);
area += SF_XYZ_areaSq(xyz,pS,0);
if (pS) delete pS;
}
PList_delete(fVerts);
area /= F_numVertices(face);
return area;
}
// -------------------------------------------------------------------
double LocalSizeField::SF_XYZ_areaSq(const double fxyz[3][3],
const pMSize pS,
const double norDir[3]) const
{
if( !pS ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,"No size defined");
}
// get the two first edges
double e01[3],e02[3];
diffVec(fxyz[1],fxyz[0],e01);
diffVec(fxyz[2],fxyz[0],e02);
double nor[3];
crossProd(e01,e02,nor);
double l1SqInv = 1. / pS->lengthSqInDir(e01);
double l2SqInv = 1. / pS->lengthSqInDir(e02);
if( norDir && dotProd(norDir,nor) < MAdTOL ) return 0.;
double areaSq = 0.25 * dotProd(nor,nor) * l1SqInv * l2SqInv;
if( areaSq < MAdTOL ) return 0.;
return areaSq;
}
// -------------------------------------------------------------------
// Volume computation
// -------------------------------------------------------------------
double LocalSizeField::SF_R_volume(const pRegion region) const
{
double vol = 0.;
double xyz[4][3];
R_coordP1(region,xyz);
pPList rVerts = R_vertices(region);
void * temp = 0;
while( pVertex pV = (pVertex)PList_next(rVerts,&temp) )
{
pMSize pS = getSize(pV);
vol += SF_XYZ_volume(xyz,pS);
if (pS) delete pS;
}
PList_delete(rVerts);
vol /= R_numVertices(region);
return vol;
}
// -------------------------------------------------------------------
double LocalSizeField::SF_XYZ_volume(const double xyz[4][3], const pMSize pS) const
{
if( !pS ) {
printf("Error in LocalSizeField::volume: no size given\n");
throw;
}
double physVol = R_XYZ_volume(xyz);
return ( physVol / (pS->size(0)*pS->size(1)*pS->size(2)) );
}
// -------------------------------------------------------------------
// Center of edge computation
// -------------------------------------------------------------------
// -------------------------------------------------------------------
double LocalSizeField::SF_E_center(const pEdge edge, double center[3],
double * reducSq, pMSize * cSize) const
{
return SF_VV_center(E_vertex(edge,0),E_vertex(edge,1),center,reducSq,cSize);
}
// -------------------------------------------------------------------
double LocalSizeField::SF_VV_center(const pVertex v0, const pVertex v1,
double center[3], double * reducSq,
pMSize * cSize) const
{
double xyz[2][3];
V_coord(v0,xyz[0]);
V_coord(v1,xyz[1]);
pMSize pS[2];
pS[0] = getSize(v0);
pS[1] = getSize(v1);
double cParam = SF_XYZ_center(xyz,pS,center,reducSq,cSize);
if ( pS[0] ) delete pS[0];
if ( pS[1] ) delete pS[1];
return cParam;
}
// -------------------------------------------------------------------
bool LocalSizeField::getCurvature(const pVertex pv, double *c) const
{
return dFct.getCurvature(pv,c);
}
// -------------------------------------------------------------------
double LocalSizeField::getDistance(const pVertex pv) const
{
return dFct.getDistance(pv);
}
// ----------------------------------------------------------------------
// -------------------------------------------------------------------
void LocalSizeField::scale(double fact)
{
printf("Not implemented (LocalSizeField::scale)\n");
throw;
}
// ----------------------------------------------------------------------
// ----------------------------------------------------------------------
void LocalSizeField::updateTree()
{
#if 0
dFct.computeAllDistancesEDP(geomEntities);
dFct.outputDistance("distance.pos");
// gather all regions with a vertex in the scope of the size field
set<pRegion> allR;
RIter rit = M_regionIter(mesh);
while (pRegion pr = RIter_next(rit)) {
allR.insert(pr);
}
RIter_delete(rit);
#warning "changed gradient computation ton constant gradients"
dFct.computeGradientAndCurvature(allR);
// // gather all faces
// set<pFace> allF;
// FIter fit = M_faceIter(mesh);
// while (pFace pf = FIter_next(fit)) {
// allF.insert(pf);
// }
// FIter_delete(fit);
// dFct.computeGradientAndCurvature2D(allF);
dFct.outputGradAtVertices("grad.pos");
if ( limit ) dFct.outputCurvature("curv.pos");
exit(0);
#endif
MAdResourceManager& tm = MAdResourceManagerSgl::instance();
double t0 = tm.getTime();
set<pVertex> vertices;
set<pEntity> entities;
collectEntities(&vertices, &entities);
dFct.computeTree(vertices,entities);
printf("Computed tree in %f sec\n",tm.getTime()-t0);
if ( !isotropic )
{
// curvatures are not implemented in 2D
if ( M_dim(mesh) < 3 ) dFct.computeGradientAtVertices();
else {
// #warning "changed gradient computation ton constant gradients"
// dFct.computeAllDistances();
double t1 = tm.getTime();
dFct.computeAllDistAndGrad();
printf("Computed dist and grad in %f sec\n",tm.getTime()-t1);
// #warning "hack for exact dist"
// dFct.computeAllDistances();
double t2 = tm.getTime();
// gather all regions with a vertex in the scope of the size field
set<pRegion> allR;
pPList vRegs;
VIter vit = M_vertexIter(mesh);
while (pVertex pv = VIter_next(vit)) {
if ( dFct.getDistance(pv) <= radius ) {
vRegs = V_regions(pv);
for (int i=0; i< PList_size(vRegs); i++) allR.insert((pRegion)PList_item(vRegs,i));
PList_delete(vRegs);
}
}
VIter_delete(vit);
// #warning "changed gradient computation ton constant gradients"
// dFct.computeGradientAndCurvature(allR);
if ( limit ) {
dFct.computeCurvature(allR);
// #warning "smoothing the curvature (3)"
// dFct.limitCurvature(maxCurv);
// dFct.smoothCurvature(50.);
}
printf("Computed curvatures in %f sec\n",tm.getTime()-t2);
// #warning "debug: output curvatures in volume"
// double t3 = tm.getTime();
// dFct.outputDistance("dist.pos");
// dFct.outputGradAtVertices("grad.pos");
// if ( limit ) dFct.outputCurvature("curv.pos");
// printf("Outputs in %f sec\n",tm.getTime()-t3);
// exit(0);
}
}
printf("Updated tree in %f sec\n",tm.getTime()-t0);
}
// ----------------------------------------------------------------------
void LocalSizeField::collectEntities(set<pVertex> * verts,
set<pEntity> * ents) const
{
verts->clear();
ents->clear();
set<pGEntity>::const_iterator it = geomEntities.begin();
set<pGEntity>::const_iterator itEnd = geomEntities.end();
for (; it != itEnd; it++)
{
switch ( GEN_type(*it) ) {
case 0:
{
VIter vit = M_vertexIter(mesh);
while (pVertex pv = VIter_next(vit))
{
if ( EN_whatIn((pEntity)pv) == *it ) {
ents->insert((pEntity)pv);
verts->insert(pv);
}
}
VIter_delete(vit);
break;
}
case 1:
{
EIter eit = M_edgeIter(mesh);
while (pEdge pe = EIter_next(eit))
{
if ( EN_whatIn((pEntity)pe) == *it )
{
ents->insert((pEntity)pe);
verts->insert(E_vertex (pe,0));
verts->insert(E_vertex (pe,1));
}
}
EIter_delete(eit);
}
case 2:
{
FIter fit = M_faceIter(mesh);
while (pFace pf = FIter_next(fit))
{
if ( EN_whatIn((pEntity)pf) == *it )
{
ents->insert((pEntity)pf);
verts->insert(F_vertex (pf,0));
verts->insert(F_vertex (pf,1));
verts->insert(F_vertex (pf,2));
}
}
FIter_delete(fit);
}
case 3:
{
RIter rit = M_regionIter(mesh);
while (pRegion pr = RIter_next(rit))
{
if ( EN_whatIn((pEntity)pr) == *it )
{
ents->insert((pEntity)pr);
verts->insert(R_vertex (pr,0));
verts->insert(R_vertex (pr,1));
verts->insert(R_vertex (pr,2));
verts->insert(R_vertex (pr,3));
}
}
RIter_delete(rit);
}
}
}
}
// ----------------------------------------------------------------------
}
|