1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// -*- C++ -*-
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information.
// You should have received a copy of these files along with MAdLib.
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Richard Comblen, Gaetan Compere, Jean-Francois Remacle
// -------------------------------------------------------------------
#ifndef _H_LINEARSYSTEMPETSC_MAD
#define _H_LINEARSYSTEMPETSC_MAD
// -------------------------------------------------------------------
// Interface to PETSc
// -------------------------------------------------------------------
#ifdef _HAVE_PETSC_
#include "MAdLinearSystem.h"
#include "petsc.h"
#include "petscksp.h"
#include "petscmat.h"
#include "petscvec.h"
#include <iostream>
#include <string>
namespace MAd {
class MAdLinearMatrixPETSc {
private:
int * nnz;
int local_size, global_size;
bool allocated, assembled;
public:
Mat mat;
MAdLinearMatrixPETSc(int _local_size, int _global_size) {
local_size = _local_size;
global_size = _global_size;
nnz = new int[local_size];
mat = NULL;
allocated = false;
assembled = false;
}
~MAdLinearMatrixPETSc() {
if(mat) MatDestroy(mat);
delete [] nnz;
}
void set_nnz(int row, int nz){
nnz[row] = nz;
}
// You must call set_nnz before!
void allocate(){
if(!allocated){
MatCreate(PETSC_COMM_WORLD, &mat);
MatSetSizes(mat,local_size,local_size,global_size,global_size);
MatSetFromOptions(mat);
// MatMPIAIJSetPreallocationCSR(mat,sparsity->rowstart,sparsity->colind,NULL);
MatSeqAIJSetPreallocation(mat,0,nnz);
allocated=true;
}
}
void add(int row, int col, double val){
MatSetValue(mat, row, col, val, ADD_VALUES);
assembled = false;
}
void assemble()
{
if(assembled) return;
MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (mat, MAT_FINAL_ASSEMBLY);
#if PETSC_VERSION_MAJOR==3
MatSetOption(mat, MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);
MatSetOption(mat, MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
#else
MatSetOption(mat, MAT_NO_NEW_NONZERO_LOCATIONS);
#endif
assembled = true;
}
void zero(){
//assemble();
MatZeroEntries(mat);
}
void print(std::string name)
{
printf("\nPrinting matrix %s:\n\n",name.c_str());
if ( !allocated ) {printf("Not allocated!\n"); return;}
if ( !assembled ) {printf("Not assembled!\n"); return;}
MatView(mat,PETSC_VIEWER_STDOUT_WORLD);
}
};
class MAdLinearVectorPETSc {
private:
int local_size, global_size, nghosts;
double * entries;
public:
Vec vec;
MAdLinearVectorPETSc(int _local_size, int _global_size){
global_size = _global_size;
local_size = _local_size;
nghosts = 0;
entries = new double[local_size+nghosts];
VecCreateMPIWithArray(MPI_COMM_WORLD,local_size,global_size,entries,&vec);
VecAssemblyBegin(vec);
VecAssemblyEnd(vec);
VecSet(vec, 0);
get_array();
}
~MAdLinearVectorPETSc(){
VecDestroy(vec);
delete []entries;// Check whether Petsc does destroy it or not...
}
inline double& operator()(int row){
return entries[row];
}
void zero(){
for(int i=0;i<local_size+nghosts;i++){
entries[i]=0;
}
}
void gather(){
// To be implemented - see slim_vector.cc
}
void scatter(){
// To be implemented - see slim_vector.cc
}
void get_array(){
VecGetArray(vec,&entries);
}
void restore_array(){
VecRestoreArray(vec,&entries);
}
void print(std::string name)
{
printf("\nPrinting vector %s:\n\n",name.c_str());
VecView(vec,PETSC_VIEWER_STDOUT_WORLD);
}
};
// -------------------------------------------------------------------
class MAdLinearSystemPETSc : public MAdLinearSystem {
private:
MAdLinearMatrixPETSc * matrix;
MAdLinearVectorPETSc * rhs;
MAdLinearVectorPETSc * X;
KSP ksp;
public:
MAdLinearSystemPETSc():
MAdLinearSystem()
{
PetscInitialize(0,NULL, NULL, NULL);
KSPCreate(PETSC_COMM_WORLD, &ksp);
}
~MAdLinearSystemPETSc ()
{
KSPDestroy(ksp);
delete matrix;
delete rhs;
delete X;
}
bool isAllocated () const {throw;}
void allocate (int nbRows){
int local_size, global_size;
local_size = global_size = nbRows;
matrix = new MAdLinearMatrixPETSc(local_size, global_size);
rhs = new MAdLinearVectorPETSc(local_size, global_size);
X = new MAdLinearVectorPETSc(local_size, global_size);
}
void addToMatrix (int row, int col, double val) {
matrix->add(row,col,val);
}
double getFromMatrix (int _row, int _col) const {
throw;
}
void addToRightHandSide (int row, double val) {
(*rhs)(row) += val;
}
double getFromRightHandSide (int row) const {
return (*rhs)(row);
}
double getFromSolution (int row) const {
return (*X)(row);
}
void zeroMatrix () {
matrix->zero();
}
void zeroRightHandSide () {
rhs->zero();
}
void reorder () {
}
void set_nnz(int row,int nz){
matrix->set_nnz(row,nz);
}
void allocate_matrix(){
matrix->allocate();
}
void setSolver(SolverType _type) {
}
int systemSolve () {
rhs->restore_array();
X->restore_array();
matrix->assemble();
// #warning "debug"
// printMatrix();
// printRhs();
std::string options;
options="-pc_type bjacobi -sub_pc_type icc -ksp_type cg -ksp_rtol 1e-6";
// options="-pc_type hypre -pc_hypre_type boomeramg -pc_hypre_boomeramg_print_statistics -ksp_type gmres -ksp_rtol 1e-7 -ksp_monitor";
PetscOptionsInsertString(options.c_str());
KSPSetFromOptions(ksp);
KSPSetOperators (ksp, matrix->mat, matrix->mat, DIFFERENT_NONZERO_PATTERN);
KSPSolve(ksp, rhs->vec, X->vec);
X->get_array();
rhs->get_array();
KSPConvergedReason reason;
return KSPGetConvergedReason(ksp,&reason);
}
void printMatrix(std::string name="")
{
matrix->print("Left hand size");
}
void printRhs(std::string name="")
{
rhs->print("Right hand size");
}
};
}
#endif
#endif
|