1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
|
// -------------------------------------------------------------------
// MAdLib - Copyright (C) 2008-2009 Universite catholique de Louvain
//
// See the Copyright.txt and License.txt files for license information.
// You should have received a copy of these files along with MAdLib.
// If not, see <http://www.madlib.be/license/>
//
// Please report all bugs and problems to <contrib@madlib.be>
//
// Authors: Jean-Francois Remacle, Gaetan Compere, Koen Hillewaert
// -------------------------------------------------------------------
#include "MeshDataBaseInterface.h"
#include "MeshDataBaseParallelInterface.h"
#include "MeshDataBase.h"
#include "MeshDataBaseIO.h"
#include "PList.h"
#include "ParallelUtils.h"
#include "MAdDefines.h"
#include "MathUtils.h"
#include <string>
#include <map>
#ifdef PARALLEL
#include "MeshDataBaseParallelIO.h"
#endif
#include "MAdMessage.h"
#include "MAdSingleton.h"
#include <sstream>
/*! \defgroup mesh Mesh operations */
/*! \defgroup entity Entity operations */
/*! \defgroup region Region operations */
/*! \defgroup face Face operations */
/*! \defgroup edge Edge operations */
/*! \defgroup vertex Vertex operations */
/*! \defgroup point Point operations */
/*! \defgroup ios Mesh in- and output */
/*! \defgroup parallel Communication */
/*! \defgroup internal Internal routines */
typedef MAdSingleton< std::map <std::string, unsigned int> > attachableDataIds;
typedef MAdSingleton< std::map <unsigned int, std::string > > attachableDataIds_rev;
namespace MAd {
pMeshDataId newMeshDataId(const std::string tag)
{
std::string tag2;
if ( !strcmp(tag.c_str(),"") ) {
tag2 = "X";
bool unique = false;
while ( !unique )
{
std::map<std::string, unsigned int>::iterator iter = (attachableDataIds::instance()).find(tag2);
if(iter != (attachableDataIds::instance()).end()) {
tag2 = tag2 + "X";
}
else unique = true;
}
}
else tag2 = tag;
std::map<std::string, unsigned int>::iterator iter = (attachableDataIds::instance()).find(tag2);
if(iter != (attachableDataIds::instance()).end()) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Mesh data id with tag \'%s\' already exists",tag2.c_str());
return (*iter).second;
}
if((attachableDataIds::instance()).empty())
{
(attachableDataIds_rev::instance())[1] = tag2;
(attachableDataIds::instance()) [tag2] = 1;
return 1;
}
else
{
unsigned int biggest = (*(--(attachableDataIds_rev::instance()).end())).first;
(attachableDataIds_rev::instance())[biggest+1] = tag2;
(attachableDataIds::instance()) [tag2] = biggest+1;
return biggest+1;
}
}
pMeshDataId MD_newMeshDataId(const std::string tag)
{
return newMeshDataId(tag);
}
pMeshDataId MD_lookupMeshDataId(const std::string tag) {
std::map <std::string, unsigned int>::const_iterator it =
(attachableDataIds::instance()).find(tag);
if(it == (attachableDataIds::instance()).end())return newMeshDataId(tag);
return (*it).second;
}
void MD_deleteMeshDataId(pMeshDataId id) {
(attachableDataIds::instance()).erase((attachableDataIds_rev::instance())[id]);
(attachableDataIds_rev::instance()).erase(id);
}
//! OBSOLETE, use EN_dim(pEntity) instead.
//! Returns type/dimension of element pe \ingroup entity
int EN_type(pEntity pe)
{
return pe->getDim();
}
//! Returns type/dimension of element pe \ingroup entity
int EN_dim(pEntity pe)
{
return pe->getDim();
}
//! Returns msh tag of element pe \ingroup entity
int EN_mshTag(pEntity pe)
{
return pe->getMshTag();
}
//! Remove data with tag t from element pe \ingroup entity
void EN_removeData(pEntity pe, const char *t)
{
unsigned int itag = MD_lookupMeshDataId(t);
pe->deleteData (itag);
}
//! Add pointer data to element pe with tag \ingroup entity
void EN_attachDataP(pEntity pe, const char *tag, void *data)
{
unsigned int itag = MD_lookupMeshDataId(tag);
EN_attachDataPtr(pe, itag, data);
}
//! Remove data with tag id from element pe \ingroup entity
void EN_deleteData(pEntity pe, pMeshDataId id)
{
pe->deleteData (id);
}
//! Replace data with tag id with value \ingroup entity
void EN_modifyDataPtr(pEntity ent, pMeshDataId id, void * value)
{
EN_attachDataPtr(ent, id, value);
}
//! Add pointer data to element pe with tag \ingroup entity
void EN_attachDataPtr(pEntity pe, pMeshDataId id, void * value)
{
mAttachableVoid *av = (mAttachableVoid *)pe->getData(id);
if(!av)
{
av = new mAttachableVoid;
pe->attachData(id,av);
}
av->veryNastyPointer = value;
}
//! Get pointer data with tag from element \ingroup entity
void * EN_dataP(pEntity pe, const char *tag)
{
unsigned int itag = MD_lookupMeshDataId(tag);
mAttachableVoid *av = (mAttachableVoid *)pe->getData(itag);
if(!av)return 0;
return av->veryNastyPointer;
}
//! Replace data with tag id with value \ingroup entity
int EN_modifyDataP(pEntity pe, const char *tag, void * data)
{
EN_attachDataP(pe, tag, data);
return 1;
}
//! Add integer data with tag id to element pe \ingroup entity
void EN_attachDataI(pEntity pe, const char *tag, int data)
{
pe->attachInt(MD_lookupMeshDataId(tag),data);
}
//! Add integer data with tag id to element pe \ingroup entity
void EN_attachDataInt(pEntity pe, pMeshDataId id, int data)
{
pe->attachInt(id,data);
}
//! Get integer data with tag id from element pe \ingroup entity
int EN_dataI(pEntity pe, const char *tag)
{
return pe->getAttachedInt(MD_lookupMeshDataId(tag));
}
//! Get floating precision data pointer with tag id from element pe \ingroup entity
int EN_getDataDbl(pEntity ent, pMeshDataId id, double *value)
{
mAttachableDouble *ai = (mAttachableDouble *)ent->getData(id);
if(!ai)return 0;
*value = ai->d;
return 1;
//*value = ent->getAttachedDouble(id);
//return 1;
}
//! Add floating precision data pointer with tag id to element pe \ingroup entity
void EN_attachDataDbl(pEntity ent, pMeshDataId id, double value)
{
ent->attachDouble(id,value);
}
//! Modify floating precision data pointer with tag id in element pe \ingroup entity
void EN_modifyDataDbl(pEntity ent, pMeshDataId id, double value)
{
ent->attachDouble(id,value);
}
//! Modify integer data with tag id in element pe \ingroup entity
int EN_modifyDataI(pEntity pe, const char *tag, int data)
{
pe->attachInt(MD_lookupMeshDataId(tag),data);
return 1;
}
//! Modify integer data with tag id in element pe \ingroup entity
void EN_modifyDataInt(pEntity ent, pMeshDataId id, int value)
{
ent->attachInt(id,value);
}
//! Get address of data pointer with tag id in element pe \ingroup entity
int EN_getDataPtr(pEntity ent, pMeshDataId id, void **value)
{
mAttachableVoid *av = (mAttachableVoid *)ent->getData(id);
if(!av)return 0;
*value = av->veryNastyPointer;
return 1;
}
//! Get integer data with tag id from element pe \ingroup entity
int EN_getDataInt(pEntity ent, pMeshDataId id, int *value)
{
mAttachableInt *ai = (mAttachableInt *)ent->getData(id);
(*value) = 0;
if(!ai)return 0;
*value = ai->i;
return 1;
//*value = ent->getAttachedInt(id);
//if(*value)return 1;
//return 0;
}
pMesh M_new(pGModel pm)
{
pMesh m = new MDB_Mesh;
m->model = pm;
return m;
}
void M_delete(pMesh pm)
{
if (pm) { delete pm; pm=NULL; }
}
//! Load a mesh from a file \ingroup ios
//! - msh1 or msh2
//! - serial or parallel (format msh2 for parallel)
//! - periodic or non-periodic
void M_load(pMesh pm, const char *filename)
{
LoadGmshMesh (pm, filename);
pMeshDataId remoteTag = MD_lookupMeshDataId("RemotePoint");
V_createInfoInterface(pm,remoteTag);
E_createInfoInterface(pm,remoteTag);
F_createInfoInterface(pm,remoteTag);
}
//! Save a mesh \ingroup ios
//! - msh1 or msh2
//! - serial or parallel
//! - If a partitioning table is submitted,
//! write the right partition numbers in the file
void M_writeMsh(const pMesh mesh, const char *name,
int version, const int * partitionTable)
{
#ifdef PARALLEL
SaveGmshMeshParallel (mesh, name, version);
#else
SaveGmshMesh (mesh, name, version, true, partitionTable);
#endif
}
//! Save a periodic mesh \ingroup ios
void M_writeMshPer(pMesh mesh, const char *name, MDB_DataExchangerPeriodic &deperiodic, int version)
{
SaveGmshMeshPer(mesh,name,deperiodic,version);
}
//! returns geometric model \ingroup mesh
pGModel M_model(pMesh mesh)
{
return mesh->model;
}
//! reduces the mesh to its minimal datastructure \ingroup mesh
void M_shrink(pMesh mesh)
{
mesh->shrink();
}
//! reverts the mesh to its usable form \ingroup mesh
void M_expand(pMesh mesh)
{
mesh->expand();
}
//! removes all deleted entities - clean up \ingroup mesh
void M_clean(pMesh mesh)
{
RIter rIter = M_regionIter(mesh);
while ( RIter_next(rIter) ) {}
RIter_delete(rIter);
FIter fIter = M_faceIter(mesh);
while ( FIter_next(fIter) ) {}
FIter_delete(fIter);
EIter eIter = M_edgeIter(mesh);
while ( EIter_next(eIter) ) {}
EIter_delete(eIter);
VIter vIter = M_vertexIter(mesh);
while ( VIter_next(vIter) ) {}
VIter_delete(vIter);
}
// -------------------------------------------------------------------
//! Dump informations on the mesh \ingroup mesh
void M_info(const pMesh mesh, std::ostream& out)
{
out << "\n";
out << "Mesh statistics:\n";
out << " Number of regions : " << M_numRegions(mesh) << "\n";
out << " Number of faces : " << M_numFaces(mesh) << "\n";
out << " Number of edges : " << M_numEdges(mesh) << "\n";
out << " Number of vertices: " << M_numVertices(mesh) << "\n";
out << "\n";
}
// -------------------------------------------------------------------
#ifdef _HAVE_METIS_
//! Serial function to partition a mesh and write the partitioned mesh to a file in msh2 format \ingroup parallel
void M_Partition(pMesh mesh, int nbParts, const char *filename)
{
PartitionMesh(mesh, nbParts, filename);
}
#endif
// -------------------------------------------------------------------
//! Returns the dimension of the mesh \ingroup mesh
int M_dim(pMesh pm)
{
if ( M_numRegions(pm) > 0 ) return 3;
else if ( M_numFaces(pm) > 0 ) return 2;
else if ( M_numEdges(pm) > 0 ) return 1;
else if ( M_numVertices(pm) > 0 ) return 0;
return -1;
}
// -------------------------------------------------------------------
//! returns the maximum mapping order for mesh edges \ingroup mesh
int M_edgeMaxOrder(pMesh mesh)
{
EIter eIter = M_edgeIter(mesh);
int o = 0;
while (pEdge pe = EIter_next(eIter)) o = std::max(o,pe->getOrder());
EIter_delete(eIter);
return o;
}
//! returns the maximum mapping order for mesh face \ingroup mesh
int M_faceMaxOrder(pMesh mesh)
{
FIter fIter = M_faceIter(mesh);
int o = 0;
while (pFace pf = FIter_next(fIter)) o = std::max(o,pf->getOrder());
FIter_delete(fIter);
return o;
}
//! returns the maximum mapping order for mesh regions \ingroup mesh
int M_regionMaxOrder(pMesh mesh)
{
RIter rIter = M_regionIter(mesh);
int o = 0;
while (pRegion pr = RIter_next(rIter)) o = std::max(o,pr->getOrder());
RIter_delete(rIter);
return o;
}
//! returns the maximum mapping order for all elements \ingroup mesh
int M_maxOrder(pMesh mesh) {
return std::max(M_edgeMaxOrder(mesh),
std::max(M_faceMaxOrder(mesh),
M_regionMaxOrder(mesh)));
}
// -------------------------------------------------------------------
//! Returns true if boundary nodes have parametric coordinates \ingroup mesh
bool M_isParametric(pMesh mesh)
{
return mesh->isParametric();
}
// -------------------------------------------------------------------
//! returns number of regions in mesh \ingroup mesh \ingroup mesh
int M_numRegions(pMesh pm)
{
return pm->nbTets + pm->nbHexes + pm->nbPrisms;
}
//! returns number of tetrahedra in mesh \ingroup mesh
int M_numTets(pMesh pm)
{
return pm->nbTets;
}
//! returns number of hexahedra in mesh \ingroup mesh
int M_numHexes(pMesh pm)
{
return pm->nbHexes;
}
//! returns number of prism in mesh \ingroup mesh
int M_numPrisms(pMesh pm)
{
return pm->nbPrisms;
}
//! returns number of faces in mesh \ingroup mesh
int M_numFaces(pMesh pm)
{
return pm->nbTriangles + pm->nbQuads;
}
//! returns number of triangles in mesh \ingroup mesh
int M_numTriangles(pMesh pm)
{
return pm->nbTriangles;
}
//! returns number of quadrilaterals in mesh \ingroup mesh
int M_numQuads(pMesh pm)
{
return pm->nbQuads;
}
//! returns number of edges in mesh \ingroup mesh
int M_numEdges(pMesh pm)
{
return pm->nbEdges;
}
//! returns number of vertices in mesh \ingroup mesh
int M_numVertices(pMesh pm)
{
return pm->nbPoints;
}
//! returns number of regions classified on ge \ingroup mesh
int M_numClassifiedRegions(pMesh m,pGEntity ge) {
return countClassifiedElements< MDB_ListT , MDB_Tet , pGEntity> (&m->tets,ge);
}
//! returns number of faces classified on ge \ingroup mesh
int M_numClassifiedFaces(pMesh m,pGEntity ge) {
return countClassifiedElements< MDB_ListF , MDB_Triangle , pGEntity> (&m->triangles,ge);
}
//! returns number of edges classified on ge \ingroup mesh
int M_numClassifiedEdges(pMesh m,pGEntity ge) {
return countClassifiedElements< MDB_ListE , MDB_Edge , pGEntity> (&m->edges,ge);
}
//! returns number of vertices classified on ge \ingroup mesh
int M_numClassifiedVertices(pMesh m,pGEntity ge) {
return countClassifiedElements< MDB_SetV , MDB_Point , pGEntity> (&m->points,ge);
}
//! returns region iterator over mesh \ingroup mesh
/*! \warning not thread-safe */
RIter M_regionIter(pMesh mesh)
{
return new MDB_RegionIter (&mesh->tets,&mesh->hexes,&mesh->prisms);
}
//! returns face iterator over mesh \ingroup mesh
/*! \warning not thread-safe */
FIter M_faceIter(pMesh mesh)
{
return new MDB_FaceIter (&mesh->triangles,&mesh->quads);
}
//! returns edge iterator over mesh \ingroup mesh
/*! \warning not thread-safe */
EIter M_edgeIter(pMesh mesh)
{
return new MDB_EIter (&mesh->edges);
}
//! returns vertex iterator over mesh \ingroup mesh
/*! \warning not thread-safe */
VIter M_vertexIter(pMesh mesh)
{
return new MDB_VIter (&mesh->points);
}
//! returns iterator for regions in \e mesh classified on model entity \e pg \ingroup mesh
/*!
When done with it, should be deleted with function RIter_delete() to avoid
memory leaks.
*/
RIter M_classifiedRegionIter(pMesh mesh,pGEntity pg)
{
return new MDB_RegionIter (&mesh->tets,&mesh->hexes,&mesh->prisms,pg);
}
//! returns iterator for faces in \e mesh classified on model entity \e pg \ingroup mesh
/*!
The argument \e c (closure) must currently be set to 0. Only the faces directly classified on \e pg will be considered. \n
Example: if \e pg is a model region, the mesh faces classified on the model
faces bordering \e pg will not be reachable with the present iterator. \n \n
When done with it, should be deleted with function FIter_delete() to avoid
memory leaks.
*/
FIter M_classifiedFaceIter(pMesh mesh,pGEntity pg,int c)
{
return new MDB_FaceIter (&mesh->triangles,&mesh->quads,pg,c);
}
//! returns iterator for edges in \e mesh classified on model entity \e pg \ingroup mesh
/*!
The argument \e c (closure) must currently be set to 0. Only the edges directly classified on \e pg will be considered. \n
Example: if \e pg is a model region, the mesh edges classified on the model
edges and faces bordering \e pg will not be reachable with the present iterator. \n \n
When done with it, should be deleted with function EIter_delete() to avoid
memory leaks.
*/
EIter M_classifiedEdgeIter(pMesh mesh,pGEntity pg,int c)
{
return new MDB_EIter (&mesh->edges,pg,c);
}
//! returns iterator for vertices in \e mesh classified on model entity \e pg \ingroup mesh
/*!
The argument \e c (closure) must currently be set to 0. Only the vertices directly classified on \e pg will be considered. \n
Example: if \e pg is a model region, the mesh vertices classified on the model
vertices, edges and faces bordering \e pg will not be reachable with the present iterator. \n \n
When done with it, should be deleted with function VIter_delete() to avoid
memory leaks.
*/
VIter M_classifiedVertexIter(pMesh mesh,pGEntity pg,int c)
{
return new MDB_VIter (&mesh->points,pg,c);
}
//! returns vertex in \e mesh classified on model vertex \e pg \ingroup mesh
/*!
returns 0 if failed
*/
pVertex M_classifiedVertex(pMesh mesh,pGVertex pg)
{
return (MDB_VIter(&mesh->points,(pGEntity) pg,0)).next();
}
//! Automatically classify the entities with no classification \ingroup mesh
void M_classifyEntities(pMesh mesh)
{
mesh->classify_unclassified_entities();
}
// -------------------------------------------------------------------
// Iterators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
pRegion RIter_next(RIter it)
{
return it->next();
}
pFace FIter_next(FIter it)
{
return it->next();
}
pEdge EIter_next(EIter it)
{
return it->next();
}
pVertex VIter_next(VIter it)
{
return it->next();
}
// -------------------------------------------------------------------
void RIter_reset(RIter it)
{
it->reset();
}
void FIter_reset(FIter it)
{
it->reset();
}
void EIter_reset(EIter it)
{
it->reset();
}
void VIter_reset(VIter it)
{
it->reset();
}
// -------------------------------------------------------------------
void RIter_delete(RIter it)
{
delete it;
}
void FIter_delete(FIter it)
{
delete it;
}
void EIter_delete(EIter it)
{
delete it;
}
void VIter_delete(VIter it)
{
delete it;
}
// -------------------------------------------------------------------
//! returns the region using the vertices with these id's. \ingroup mesh
//! Returns NULL if not found.
pRegion M_region(pMesh m, int id[])
{
pFace f = M_face(m,id);
if ( !f ) {printf("could not find face with ids: %d %d %d\n",id[0],id[1],id[2]); return 0;}
pRegion r; pVertex v;
for (int i=0; i<2; i++) {
r = F_region(f,i);
if (r) {
v = R_fcOpVt(r,f);
if ( v && ( V_id(v) == id[3] ) ) return r;
}
}
return 0;
}
// -------------------------------------------------------------------
//! returns the face using the vertices with these id's. \ingroup mesh
//! Returns NULL if not found.
pFace M_face(pMesh m, int id[])
{
pEdge e = M_edge(m,id[0],id[1]);
if ( !e ) {printf("could not find edge with ids: %d %d\n",id[0],id[1]); return 0;}
pPList eF = E_faces(e);
void * tmp = NULL;
pFace f;
pVertex v;
while ( ( f = (pFace)PList_next(eF,&tmp) ) ) {
v = F_edOpVt(f,e);
if ( v && ( V_id(v) == id[2] ) ) {
PList_delete(eF);
return f;
}
}
PList_delete(eF);
return 0;
}
// -------------------------------------------------------------------
//! returns the edge between the vertices with these id's. \ingroup mesh
//! Returns NULL if not found.
pEdge M_edge(pMesh m, int id0, int id1)
{
return m->find_edge(id0,id1);
}
// -------------------------------------------------------------------
//! returns the vertex with this id. Returns NULL if not found. \ingroup mesh
pVertex M_vertex(pMesh m, int id)
{
return m->find_point(id);
}
// -------------------------------------------------------------------
// Region operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Dumps all informations about the region. \ingroup region
void R_info(const pRegion region, std::string name, std::ostream& out)
{
out << "\nRegion \'" << name << "\' (" << region
<< ", Id: "<<(int)EN_id((pEntity)region)
<<") informations:\n";
out << " Classification: ";
pGEntity pGE = (pGEntity)R_whatIn(region);
if (!pGE) {
out << "NULL";
}
else {
out << "GEntity: " << pGE
<< ", dim: " << GEN_type(pGE)
<< ", tag: " << GEN_tag(pGE);
}
out << "\n";
R_info_quality(region, out);
R_info_topology(region, out);
out << "\n";
}
// -------------------------------------------------------------------
//! Dumps quality informations about the region. \ingroup region
void R_info_quality(const pRegion region, std::ostream& out)
{
out << " Quality informations:\n";
double volume = R_volume(region);
out << " Volume : " << volume << "\n";
if (volume < 0.) out << " *** Negative volume ***\n";
else {
out << " r/R ratio : " << R_inscrRad(region)/R_circumRad(region)<< "\n";
double meanRatio3;
R_meanRatioCube(region,&meanRatio3);
out << " Cubic mean ratio : " << meanRatio3 << "\n";
}
}
// -------------------------------------------------------------------
//! Dumps topology informations about the region. \ingroup region
void R_info_topology(const pRegion region, std::ostream& out)
{
out << " Topology informations:\n";
out << "\n Faces (ids): type geom ent. tag orient\n";
for (int iF=0; iF<R_numFaces(region); iF++) {
pFace face = R_face(region,iF);
pGEntity pGE = F_whatIn(face);
int gTag = pGE ? GEN_tag(pGE) : -1;
int gDim = pGE ? GEN_type(pGE) : -1;
out << " " << face << " (" << EN_id((pEntity)face) << ") "
<< gDim << " " << pGE << " " << gTag << " "
<< R_faceDir(region,iF) << "\n";
}
out << "\n Edges (ids): type model ent. tag orient\n";
pPList rEdges = R_edges(region);
void * temp = NULL;
while( pEdge edge = (pEdge)PList_next(rEdges,&temp) ) {
pGEntity pGE = E_whatIn(edge);
int gTag = pGE ? GEN_tag(pGE) : -1;
int gDim = pGE ? GEN_type(pGE) : -1;
out << " " << edge << " (" << EN_id((pEntity)edge) << ") "
<< gDim << " " << pGE << " " << gTag << "\n";
}
PList_delete(rEdges);
out << "\nVertices (ids): type model ent. tag coordinates\n";
pPList rVerts = R_vertices(region);
temp = NULL;
while( pVertex pV = (pVertex)PList_next(rVerts,&temp) ) {
double xyz[3];
V_coord(pV,xyz);
pGEntity pGE = V_whatIn(pV);
int gTag = pGE ? GEN_tag(pGE) : -1;
int gDim = pGE ? GEN_type(pGE) : -1;
out << " " << pV << " (" << EN_id((pEntity)pV) << ") "
<< gDim << " " << pGE << " " << gTag << " "
<< xyz[0] << " " << xyz[1] << " " << xyz[2] << "\n";
}
PList_delete(rVerts);
}
// -------------------------------------------------------------------
//! Returns number of faces for region "r" \ingroup region
int R_numFaces(pRegion pr)
{
return pr->getNbFace ();
}
// -------------------------------------------------------------------
//! Returns n-th face for region "r" \ingroup region
pFace R_face(pRegion pr, int n)
{
return pr->getFace(n);
}
// -------------------------------------------------------------------
//! Returns number of edges for region "r" \ingroup region
int R_numEdges(pRegion pr)
{
return pr->getNbEdge();
}
// -------------------------------------------------------------------
//! Classify region "r" on geometric entity "ge" \ingroup region
void R_setWhatIn(pRegion region, pGEntity what)
{
region->g = what;
for (int iF=0; iF<region->getNbFace(); iF++) {
pFace face = region->getFace(iF);
if ( GEN_type(face->g) > GEN_type(what) ) F_setWhatIn(face,what);
}
}
// -------------------------------------------------------------------
//! Returns n-th edge of region "r"
pEdge R_edge(pRegion pr, int n)
{
return pr->getEdge(n);
}
// -------------------------------------------------------------------
//! Returns number of principal vertices in region "r" \ingroup region
int R_numVertices(pRegion pr)
{
return pr->getNbVertex();
}
// -------------------------------------------------------------------
//! Returns nth vertex in region "r" \ingroup region
pVertex R_vertex(pRegion pr, int n)
{
return pr->getVertex (n);
}
// -------------------------------------------------------------------
//! Returns 1 if the face normal points outwards of region pr, 0 otherwise \ingroup region
int R_faceDir (pRegion pr, int n)
{
return pr->getFaceDir(n);
}
// -------------------------------------------------------------------
//! Determine face orientation with respect to the template of the region "r" \ingroup region
/*!
\warning Only implemented for tetrahedra
Returns s*(n+1), if the face is part of the closure of the region, 0 otherwise \n
Here
\li n is the number of times we need to rotate the face to correspond
with the principal vertex of the face in the element
\li s is the sign of the normal with respect to that of the template
*/
int R_faceOri(pRegion pr,int n)
{
return pr->getFaceOrientation(n);
}
// -------------------------------------------------------------------
//! Return a list of ordered edges \ingroup region
pPList R_edges(pRegion pr)
{
pPList pl = PList_new();
for (int i=0;i<pr->getNbEdge();i++)
PList_append(pl,R_edge(pr,i));
return pl;
}
// -------------------------------------------------------------------
//! Returns a list of ordered faces \ingroup region
pPList R_faces(pRegion pr)
{
pPList pl = PList_new();
for (int i=0;i<pr->getNbFace();i++)
PList_append(pl,R_face(pr,i));
return pl;
}
// -------------------------------------------------------------------
//! Returns a list of ordered principal vertices \ingroup region
pPList R_vertices(pRegion pr)
{
pPList pl = PList_new();
for (int i=0;i<pr->getNbVertex();i++)
PList_append(pl,R_vertex(pr,i));
return pl;
}
// -------------------------------------------------------------------
//! Verify whether or not entity ent is a principal vertex, edge or face of region "r" \ingroup region
int R_inClosure(pRegion pr, pEntity ent)
{
int dim = EN_type (ent);
if (dim == 2)
{
for (int i=0;i<pr->getNbFace();i++)
{
if (R_face(pr,i)== ent) return 1;
}
return 0;
}
else if (dim ==1)
{
for (int i=0;i<pr->getNbEdge();i++)
{
if (R_edge(pr,i)== ent) return 1;
}
return 0;
}
else if (dim ==0)
{
for (int i=0;i<pr->getNbVertex();i++)
{
if (R_vertex(pr,i) == ent) return 1;
}
return 0;
}
else throw;
}
// -------------------------------------------------------------------
// !return 1 if the face direction points to outside of the tet
// !return 0 inside
int R_dirUsingFace(pRegion pr, pFace face)
{
for (int i=0;i<pr->getNbFace();i++)
if (pr->getFace(i) == face)
return R_faceDir (pr,i);
throw;
}
// -------------------------------------------------------------------
//! Returns the orientation of the face pf in region pr \ingroup region
/*! Returns -1 if the face is not in the closure of the region */
int R_oriUsingFace(pRegion pr, pFace face)
{
for (int i=0;i<pr->getNbFace();i++)
if (pr->getFace(i) == face)
return R_faceOri (pr,i);
return -1;
}
// -------------------------------------------------------------------
//! Returns n-th higher order point inside of the region, excluding those in its closure \ingroup region
pPoint R_point(pRegion pr, int n)
{
return pr->getHighOrderPoint (n);
}
// -------------------------------------------------------------------
//! Returns the number of higher order points of the region, excluding those in its closure \ingroup region
int R_numPoints(pRegion pr)
{
return pr->getNbHighOrderPoints();
}
// -------------------------------------------------------------------
//! Returns 1 if the direction of the edge in pf follows the template, 0 otherwise \ingroup face
int F_dirUsingEdge(pFace pf, pEdge edge)
{
const int nbEdge = pf->getNbEdges ();
for (int i=0;i<nbEdge;i++)
if (pf->getEdge(i) == edge)
return F_edgeDir (pf,i);
throw;
}
// -------------------------------------------------------------------
//! Returns the geometrical entity on which the region "r" is classified \ingroup region
pGRegion R_whatIn(pRegion pe)
{
return (pGRegion) pe->g;
}
// -------------------------------------------------------------------
//! Returns the type of the geometrical entity on which region "r" is classified \ingroup region
int R_whatInType(pRegion e) { return EN_whatInType(e);}
// -------------------------------------------------------------------
//! Get coordinates of vertices of the region not including high-order points. \ingroup region
void R_coordP1(const pRegion region, double xyz[][3])
{
int iNode = 0;
// Summits of the region (first order nodes)
pPList rVerts = R_vertices(region);
void * temp = NULL;
while ( pVertex pV = (pVertex)PList_next(rVerts,&temp) ) {
V_coord(pV,xyz[iNode]);
iNode++;
}
PList_delete(rVerts);
}
// -------------------------------------------------------------------
//! Get coordinates of vertices and high-order points of the region. \ingroup region
void R_coord(const pRegion region, double xyz[][3])
{
// Summits of the region (first order nodes)
R_coordP1(region,xyz);
int iNode = region->getNbVertex();
// points on edges (higher order nodes)
pPList rEdges = R_edges(region);
void * temp = NULL;
while ( pEdge edge = (pEdge) PList_next(rEdges, &temp)) {
int nEPts = E_numPoints(edge);
for (int iEP=0; iEP<nEPts; iEP++) {
pPoint pP = E_point(edge,iEP);
xyz[iNode][0] = P_x(pP); xyz[iNode][1] = P_y(pP); xyz[iNode][2] = P_z(pP);
iNode++;
}
}
PList_delete(rEdges);
// points on face (higher order nodes)
pPList rFaces = R_faces(region);
temp = NULL;
while ( pFace face = (pFace) PList_next(rFaces, &temp)) {
int nFPts = F_numPoints(face);
for (int iFP=0; iFP<nFPts; iFP++) {
pPoint pP = F_point(face,iFP);
xyz[iNode][0] = P_x(pP); xyz[iNode][1] = P_y(pP); xyz[iNode][2] = P_z(pP);
iNode++;
}
}
PList_delete(rFaces);
// points on region (higher order nodes)
int nRPts = R_numPoints(region);
for (int iRP=0; iRP<nRPts; iRP++) {
pPoint pP = R_point(region,iRP);
xyz[iNode][0] = P_x(pP); xyz[iNode][1] = P_y(pP); xyz[iNode][2] = P_z(pP);
iNode++;
}
}
// -------------------------------------------------------------------
//! Returns the physical volume of the region. \ingroup region
double R_volume(pRegion region)
{
double xyz[12][3];
R_coordP1(region,xyz);
return R_XYZ_volume(xyz);
}
// -------------------------------------------------------------------
//! Returns the physical volume of the region with coordinates xyz. \ingroup region
double R_XYZ_volume (const double xyz[][3])
{
double e01[3], e02[3], e03[3];
diffVec(xyz[1],xyz[0],e01);
diffVec(xyz[2],xyz[0],e02);
diffVec(xyz[3],xyz[0],e03);
double nor012[3];
crossProd(e01,e02,nor012);
return ( dotProd(nor012,e03) * MAdSIXTH );
}
// -------------------------------------------------------------------
//! Returns the circumradius of the region \ingroup region
double R_circumRad(const pRegion region)
{
double xyz[4][3];
R_coordP1(region,xyz);
double edges0x[3][3];
for (int i=0; i<3; i++) diffVec(xyz[i+1],xyz[0],edges0x[i]);
double detEdgesInv = 1. / ( detMat(edges0x) );
double edgeMids[3][3];
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
edgeMids[i][j] = (xyz[0][j] + xyz[i+1][j]) * 0.5;
}
}
double tmpVec[3];
for (int i=0; i<3; i++) tmpVec[i] = dotProd(edges0x[i],edgeMids[i]);
double center[3];
double tmpMat[3][3];
for (int i=0; i<3; i++) {
tmpMat[i][0] = tmpVec[i];
tmpMat[i][1] = edges0x[i][1];
tmpMat[i][2] = edges0x[i][2];
}
center[0] = detMat(tmpMat);
for (int i=0; i<3; i++) {
tmpMat[i][0] = edges0x[i][0];
tmpMat[i][1] = tmpVec[i];
tmpMat[i][2] = edges0x[i][2];
}
center[1] = detMat(tmpMat);
for (int i=0; i<3; i++) {
tmpMat[i][0] = edges0x[i][0];
tmpMat[i][1] = edges0x[i][1];
tmpMat[i][2] = tmpVec[i];
}
center[2] = detMat(tmpMat);
for (int i=0; i<3; i++) { center[i] *= detEdgesInv; }
double tmpVec2[3];
diffVec(center,xyz[0],tmpVec2);
return sqrt( tmpVec2[0]*tmpVec2[0] + tmpVec2[1]*tmpVec2[1] + tmpVec2[2]*tmpVec2[2]);
}
// -------------------------------------------------------------------
//! Returns the inscribed radius of the region \ingroup region
double R_inscrRad(const pRegion region)
{
double xyz[4][3];
R_coordP1(region,xyz);
double edges0x[5][3];
for (int i=0; i<3; i++) {
diffVec(xyz[i+1],xyz[0],edges0x[i]);
}
diffVec(xyz[1],xyz[2],edges0x[3]);
diffVec(xyz[2],xyz[3],edges0x[4]);
double tmpVec[3];
double A = 0.;
crossProd(edges0x[0],edges0x[1],tmpVec);
A += sqrt( dotProd(tmpVec,tmpVec) ) * 0.5;
double V = dotProd(tmpVec,edges0x[2]) * MAdSIXTH;
crossProd(edges0x[1],edges0x[2],tmpVec);
A += sqrt( dotProd(tmpVec,tmpVec) ) * 0.5;
crossProd(edges0x[2],edges0x[0],tmpVec);
A += sqrt( dotProd(tmpVec,tmpVec) ) * 0.5;
crossProd(edges0x[3],edges0x[4],tmpVec);
A += sqrt( dotProd(tmpVec,tmpVec) ) * 0.5;
return ( 3. * V ) / A;
}
// -------------------------------------------------------------------
//! Computes the cubic mean ratio of a region. Returns 0 if negative volume. \ingroup region
bool R_meanRatioCube(const pRegion region, double * mrc)
{
double xyz[4][3];
R_coordP1(region,xyz);
return R_XYZ_meanRatioCube(xyz,mrc) ;
}
// -------------------------------------------------------------------
//! Computes the cubic mean ratio of a region with coordinates xyz. Returns false if negative volume. \ingroup region
bool R_XYZ_meanRatioCube(const double xyz[][3], double * mrc)
{
double edges[6][3];
diffVec(xyz[0],xyz[1],edges[0]);
diffVec(xyz[0],xyz[2],edges[1]);
diffVec(xyz[0],xyz[3],edges[2]);
diffVec(xyz[1],xyz[2],edges[3]);
diffVec(xyz[1],xyz[3],edges[4]);
diffVec(xyz[2],xyz[3],edges[5]);
// compute the sum of edges length square
double lSq = 0.;
for (int iE=0; iE<6; iE++) {
lSq += dotProd(edges[iE],edges[iE]);
}
// compute volume
double vol = R_XYZ_volume(xyz);
if ( vol < 0. ) {
*mrc = 0.;
return false;
}
// compute cubic mean ratio
*mrc = 15552. * vol * vol / ( lSq * lSq * lSq );
return true;
}
// -------------------------------------------------------------------
//! Check if the region with coordinates xyz \ingroup region
//! is nearly flat or with a negative volume.
bool R_XYZ_isFlat(const double xyz[][3])
{
for(int i=0; i<4; i++) {
int ind[3];
switch (i) {
case 0:
ind[0] = 1;
ind[1] = 3;
ind[2] = 2;
break;
case 1:
ind[0] = 0;
ind[1] = 2;
ind[2] = 3;
break;
case 2:
ind[0] = 3;
ind[1] = 1;
ind[2] = 0;
break;
case 3:
ind[0] = 0;
ind[1] = 1;
ind[2] = 2;
break;
}
double v01[3], v02[3];
diffVec(xyz[ind[1]],xyz[ind[0]],v01);
diffVec(xyz[ind[2]],xyz[ind[0]],v02);
double normal[3];
crossProd(v01,v02,normal);
double ASq = dotProd(normal,normal);
double v0X[3];
diffVec(xyz[i],xyz[ind[0]],v0X);
double distA = dotProd(v0X,normal);
if( distA <= 0. || distA*distA < MAdTOL*MAdTOL*ASq) return true;
}
return false;
}
// -------------------------------------------------------------------
//! Returns the vertex of the region opposite to the face. \ingroup region
pVertex R_fcOpVt(const pRegion region, const pFace face)
{
pVertex opp = NULL;
pPList fVerts = F_vertices(face,1);
pPList rVerts = R_vertices(region);
void * tempR = NULL;
while( pVertex pRV = (pVertex)PList_next(rVerts,&tempR) ) {
bool foundVertInFace = false;
void * tempF = NULL;
while( pVertex pFV = (pVertex)PList_next(fVerts,&tempF) ) {
if ( pFV == pRV ) {
foundVertInFace = true;
break;
}
}
if ( !foundVertInFace ) {
opp = pRV;
break;
}
}
PList_delete(rVerts);
PList_delete(fVerts);
return opp;
}
// -------------------------------------------------------------------
//! Returns the edge of the region opposite to given edge. \ingroup region
pEdge R_gtOppEdg(const pRegion region, const pEdge edge)
{
assert( region->getNbEdge() == 6 );
pVertex v0 = E_vertex(edge,0);
pVertex v1 = E_vertex(edge,1);
for (int iE=0; iE<6; iE++) {
pEdge rEdge = R_edge(region,iE);
if ( rEdge == edge ) continue;
pVertex rEV0 = E_vertex(rEdge,0);
if ( rEV0 == v0 || rEV0 == v1 ) continue;
pVertex rEV1 = E_vertex(rEdge,1);
if ( rEV1 == v0 || rEV1 == v1 ) continue;
return rEdge;
}
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"could not find opposite edge");
throw;
return NULL;
}
// -------------------------------------------------------------------
//! Returns the face of the region opposite to the vertex. \ingroup region
pFace R_vtOpFc(const pRegion region, const pVertex vertex)
{
assert( region->getNbFace() == 4 );
for (int iF=0; iF<R_numFaces(region); iF++ ) {
pFace face = R_face(region,iF);
pPList fVerts = F_vertices(face,1);
if ( PList_inList(fVerts,vertex) ) {
PList_delete(fVerts);
continue;
}
PList_delete(fVerts);
return face;
}
return NULL;
}
// -------------------------------------------------------------------
//! Finds the coordinates in the parent element
void R_linearParams(const pRegion pR, const double xyz[3],
double res[3])
{
double rxyz[4][3];
R_coordP1(pR,rxyz);
double mat[3][3];
mat[0][0] = rxyz[1][0] - rxyz[0][0];
mat[0][1] = rxyz[1][1] - rxyz[0][1];
mat[0][2] = rxyz[1][2] - rxyz[0][2];
mat[1][0] = rxyz[2][0] - rxyz[0][0];
mat[1][1] = rxyz[2][1] - rxyz[0][1];
mat[1][2] = rxyz[2][2] - rxyz[0][2];
mat[2][0] = rxyz[3][0] - rxyz[0][0];
mat[2][1] = rxyz[3][1] - rxyz[0][1];
mat[2][2] = rxyz[3][2] - rxyz[0][2];
double invMat[3][3];
inverseMat(mat,invMat);
double vec[3];
diffVec(xyz,rxyz[0],vec);
vecMat(vec,invMat,res);
}
// -------------------------------------------------------------------
//! Returns the center of a linear region. \ingroup region
void R_center(const pRegion region, double center[3])
{
double rxyz[4][3];
R_coordP1(region,rxyz);
center[0] = 0.25 * ( rxyz[0][0] + rxyz[1][0] + rxyz[2][0] + rxyz[3][0] );
center[1] = 0.25 * ( rxyz[0][1] + rxyz[1][1] + rxyz[2][1] + rxyz[3][1] );
center[2] = 0.25 * ( rxyz[0][2] + rxyz[1][2] + rxyz[2][2] + rxyz[3][2] );
}
// -------------------------------------------------------------------
// Get the Jacobian of a tetrahedron
void R_jacobian(const pRegion region, double jac[3][3])
{
double xyz[4][3];
R_coordP1(region,xyz);
for (int i=0; i<3; i++) {
jac[i][0] = xyz[1][i] - xyz[0][i];
jac[i][1] = xyz[2][i] - xyz[0][i];
jac[i][2] = xyz[3][i] - xyz[0][i];
}
}
// -------------------------------------------------------------------
// Get the inverse of the Jacobian of a tetrahedron
// returns the determinant of the Jacobian
double R_invJacobian(const pRegion region, double ijac[3][3])
{
double jac[3][3];
R_jacobian(region,jac);
return inverseMat(jac,ijac);
}
// -------------------------------------------------------------------
//! returns the bounding box (xyz-oriented) of the region \ingroup region
//! warning: only implemented for tets
void R_box(const pRegion pr, double box[3][2])
{
double xyz[4][3];
R_coordP1(pr,xyz);
for (int i=0; i<3; i++) {
box[i][0] = MAdBIG;
box[i][1] = -MAdBIG;
for (int j=0; j<4; j++) {
box[i][0] = std::min(box[i][0],xyz[j][i]);
box[i][1] = std::max(box[i][1],xyz[j][i]);
}
}
}
// -------------------------------------------------------------------
//! returns true if the point is in the bounding box (xyz-oriented)
//! of the region plus a tolerance \ingroup region
//! warning: only implemented for tets
bool R_inBox(const pRegion pr, const double xyz[3], double tol)
{
double box[3][2];
R_box(pr,box);
for (int i=0; i<3; i++) {
if ( xyz[i] < box[i][0] - tol || xyz[i] > box[i][1] + tol ) return false;
}
return true;
}
// -------------------------------------------------------------------
//! returns true if the point is in the region plus a tolerance \ingroup region
//! warning: only implemented for tets
bool R_contains(const pRegion pr, const double xyz[3], double tol)
{
double tmp[4];
R_linearParams(pr,xyz,tmp);
tmp[3] = 1. - tmp[0] - tmp[1] - tmp[2];
for (int i=0; i<4; i++) {
if ( tmp[i] < -tol || tmp[i] > 1.+tol ) return false;
}
return true;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// Face operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Dumps informations about the face. \ingroup face
void F_info(const pFace face, std::string name, std::ostream& out)
{
out << "\n";
out << "Face \'" << name << "\' " << face
<< ", id: " << EN_id((pEntity)face) << "\n";
out << " Classified on " << face->g
<< " with dim " << GEN_type(face->g)
<< " and tag " << GEN_tag(face->g) << "\n";
out << "\n--- Regions:\n";
for (int iR=0; iR<2; iR++) {
pRegion region = face->getRegion(iR);
if (!region) {
out << "Region "<<iR<<": "<<region<<"\n";
}
else {
out << "Region "<<iR<<" (" << region
<< ", Id: "<<(int)EN_id((pEntity)region)
<<") informations:\n";
out << " Classification: ";
pGEntity pGE = (pGEntity)R_whatIn(region);
if (!pGE) {
out << "NULL";
}
else {
out << "GEntity: " << pGE
<< ", dim: " << GEN_type(pGE)
<< ", tag: " << GEN_tag(pGE);
}
out << " Vertex opposite to face: \n";
V_info(R_fcOpVt(region,face),"",out);
out << "\n";
}
}
out << "\n--- Edges:\n";
for (int iE=0; iE<face->getNbEdges(); iE++) {
pEdge edge = face->getEdge(iE);
out << "Edge " << iE << ":\n";
E_info(edge, "", out);
}
// out << "Edge "<<iE<<" ("<< edge <<"), id "
// << EN_id((pEntity)edge) <<":\n";
// pGEntity pGE = EN_whatIn((pEntity)edge);
// out << " - Classification: dim: " << GEN_type(pGE) << ", tag: " << GEN_tag(pGE) << "\n";
// pVertex pv0 = E_vertex(edge,0);
// pVertex pv1 = E_vertex(edge,1);
// pGEntity pGE0 = EN_whatIn((pEntity)pv0);
// pGEntity pGE1 = EN_whatIn((pEntity)pv1);
// out << " - Vertices classifications:\n"
// << " - V0: dim: " << GEN_type(pGE0) << ", tag: " << GEN_tag(pGE0) << "\n"
// << " - V1: dim: " << GEN_type(pGE1) << ", tag: " << GEN_tag(pGE1) << "\n";
// out << "\n";
// }
out << "\n";
}
// -------------------------------------------------------------------
//! Returns number of edges in pf \ingroup face
int F_numEdges(pFace pf)
{
return pf->getNbEdges();
}
// -------------------------------------------------------------------
//! Returns n-th edge in pf \ingroup face
pEdge F_edge(pFace pf, int n)
{
return pf->getEdge(n);
}
// -------------------------------------------------------------------
//! Returns the edge used by the face and using the two vertices
//! Returns NULL if not found \ingroup face
pEdge F_findEdge(const pFace pf, const pVertex v0, const pVertex v1)
{
return pf->find_edge(v0,v1);
}
// -------------------------------------------------------------------
//! Returns number of vertices in pf \ingroup face
int F_numVertices(pFace pf)
{
return pf->getNbNodes();
}
// -------------------------------------------------------------------
//! Returns n-th vertex in pf \ingroup face
pVertex F_vertex(pFace pf, int n)
{
return pf->getNode(n);
}
// -------------------------------------------------------------------
//! Returns 1 if the direction of the n-th edge in pf follows the template, 0 otherwise \ingroup face
int F_edgeDir (pFace pf, int n)
{
pEdge e = F_edge (pf,n);
pVertex ve1 = E_vertex (e,0);
pVertex ve2 = E_vertex (e,1);
pVertex vf1 = F_vertex (pf,n);
pVertex vf2 = F_vertex (pf,(n+1)%F_numVertices(pf));
if (ve1 == vf1 && ve2 == vf2) return 1;
if (ve2 == vf1 && ve1 == vf2) return 0;
throw;
}
// -------------------------------------------------------------------
//! Returns number of regions referring to pf \ingroup face
int F_numRegions(pFace pf)
{
return pf->getNbRegions();
}
// -------------------------------------------------------------------
//! Returns the ordered list of vertices of pf \ingroup face
//! if dir \< 0 order is inverted, else the template is followed
pPList F_vertices(pFace pf, int dir)
{
pPList pl = PList_new();
int n = F_numVertices(pf);
if (dir<=0)
{
for (int i=n-1;i>=0;i--)
PList_append(pl,F_vertex(pf,i));
}
else
{
for (int i=0;i<n;i++)
PList_append(pl,F_vertex(pf,i));
}
return pl;
}
// -------------------------------------------------------------------
//! Returns the ordered list of edges composing the closure of pf \ingroup face
pPList F_edges(pFace pf)
{
pPList pl = PList_new();
int n = F_numVertices(pf);
for (int i=0;i<n;i++)
PList_append(pl,F_edge(pf,i));
return pl;
}
// -------------------------------------------------------------------
//! Returns the n-th region attached to pf \ingroup face
pRegion F_region(pFace pf, int n)
{
return pf->getRegion(n);
}
// -------------------------------------------------------------------
//! Returns the list of regions attached to pf \ingroup face
pPList F_regions(pFace pf)
{
pPList pl = PList_new();
for (int i=0;i<pf->getNbRegions();++i)
PList_append(pl,F_region(pf,i));
return pl;
}
// -------------------------------------------------------------------
//! Returns the region around 'pf' which is not 'pr' or NULL if none \ingroup face
pRegion F_otherRegion(const pFace pf, const pRegion pr)
{
if ( pf->getRegion(0) == pr ) return pf->getRegion(1);
if ( pf->getRegion(1) == pr ) return pf->getRegion(0);
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Face not in the closure of region");
return NULL;
}
// -------------------------------------------------------------------
//! Returns 1 if ent is in the closure of pf, else 0 \ingroup face
int F_inClosure(pFace f, pEntity ent)
{
int dim = EN_type (ent);
if (dim ==1)
{
for (int i=0;i<f->getNbEdges();i++)
{
if (F_edge(f,i)== ent) return 1;
}
return 0;
}
else if (dim ==0)
{
for (int i=0;i<f->getNbEdges();i++)
{
if (F_vertex(f,i) == ent) return 1;
}
return 0;
}
else throw;
}
// -------------------------------------------------------------------
//! Returns the geometric entity to which pf is attached \ingroup face
pGEntity F_whatIn(pFace pf)
{
return pf->g;
}
// -------------------------------------------------------------------
//! Returns the type/dimension of the geometric entity to which pf is attached \ingroup face
int F_whatInType(pFace e) { return EN_whatInType(e);}
// -------------------------------------------------------------------
//! Classify pf on geometric entity 'what' \ingroup face
void F_setWhatIn(pFace face, pGEntity what)
{
face->g = what;
for (int iE=0; iE<face->getNbEdges(); iE++) {
pEdge edge = face->getEdge(iE);
if ( GEN_type(edge->g) > GEN_type(what) ) E_setWhatIn(edge,what);
}
}
// -------------------------------------------------------------------
//! Inverts the direction of face pf by switching edge 1 and 2 \ingroup face
/*! \warning only implemented for triangles */
void F_chDir(pFace pf)
{
assert (pf->getNbEdges() == 3);
{
MDB_Triangle *t = (MDB_Triangle*)pf;
pEdge temp = t->e2;
t->e2 = t->e1;
t->e1 = temp;
}
}
// -------------------------------------------------------------------
//! Returns the n-th higher-order point attached to pf, excluding the closure \ingroup face
pPoint F_point(pFace f, int n)
{
return f->getHighOrderPoint (n);
}
// -------------------------------------------------------------------
//! Returns the number of higher-order points attached to pf, excluding the closure \ingroup face
int F_numPoints(pFace f)
{
return f->getNbHighOrderPoints();
}
// -------------------------------------------------------------------
//! Returns the number of points attached to pf, including summits and points in closure \ingroup face
int F_numPointsTot(pFace f)
{
int numPt = f->getNbNodes() + f->getNbHighOrderPoints();
pPList list = F_edges(f);
void * temp = NULL;
while ( pEdge edge = (pEdge) PList_next(list, &temp)) {
numPt += edge->getNbHighOrderPoints();
}
PList_delete(list);
return numPt;
}
// -------------------------------------------------------------------
//! Aligns the face with a set of points
//! will return zero if not successful
//! otherwise the absolute value will contain the index of the element vertex coinciding with the first vertex
//! the sign indicates the orientation
int F_align(pFace pf,pVertex pv1,pVertex pv2,pVertex pv3,pVertex pv4)
{
return pf->align(pv1,pv2,pv3,pv4);
}
// -------------------------------------------------------------------
//! Gets coordinates of vertices of the face, not including high-order points. \ingroup face
void F_coordP1(const pFace face, double xyz[][3])
{
int iNode = 0;
// Summits of the face (first order nodes)
pPList fVerts = F_vertices(face,1);
void * temp = NULL;
while ( pVertex pV = (pVertex)PList_next(fVerts,&temp)) {
V_coord(pV,xyz[iNode]);
iNode++;
}
PList_delete(fVerts);
}
// -------------------------------------------------------------------
//! Gets coordinates of points of the face including high-order points. \ingroup face
void F_coord(const pFace face, double xyz[][3])
{
// Summits of the face (first order nodes)
F_coordP1(face,xyz);
int iNode = face->getNbNodes();
// points on edges (higher order nodes)
pPList fEdges = F_edges(face);
void * temp = NULL;
while ( pEdge edge = (pEdge) PList_next(fEdges, &temp)) {
int nEPts = E_numPoints(edge);
for (int iEP=0; iEP<nEPts; iEP++) {
pPoint pP = E_point(edge,iEP);
xyz[iNode][0] = P_x(pP); xyz[iNode][1] = P_y(pP); xyz[iNode][2] = P_z(pP);
iNode++;
}
}
PList_delete(fEdges);
// points on face (higher order nodes)
int nFPts = F_numPoints(face);
for (int iFP=0; iFP<nFPts; iFP++) {
pPoint pP = F_point(face,iFP);
xyz[iNode][0] = P_x(pP); xyz[iNode][1] = P_y(pP); xyz[iNode][2] = P_z(pP);
iNode++;
}
}
// -------------------------------------------------------------------
//! Gets the parametric coordinates of the summits of the face \ingroup face
//! in the geometric entity on which it is classified.
//! Returns false if parametric coordinates are not available.
bool F_params(const pFace face, double u[][2])
{
#ifdef _HAVE_GMSH_
pGEntity faceGE = F_whatIn(face);
int gDim = GEN_type(faceGE);
if ( gDim != 2 ) return false;
for (int iV=0; iV<F_numVertices(face); iV++)
{
pVertex pv = F_vertex(face,iV);
pGEntity vG = EN_whatIn(pv);
int vGDim = GEN_type(vG);
switch ( vGDim ) {
case 3: throw;
case 2: {
assert ( vG == faceGE );
if ( !V_params(pv,&u[iV][0],&u[iV][1]) ) return false;
break;
}
case 1: {
double tmp0,tmp1;
if ( !V_params(pv,&tmp0,&tmp1) ) return false;
GE_reparamOnFace( (pGEdge)vG, (pGFace)faceGE, tmp0, u[iV], NULL );
break;
}
case 0: {
GV_reparamOnFace( (pGVertex)vG, (pGFace)faceGE, u[iV], NULL );
break;
}
}
}
return true;
#else
return false;
#endif
}
// -------------------------------------------------------------------
//! Returns area of a triangular face \ingroup face
//! if 'dir' is not NULL, the area is signed
double F_area(const pFace face, const double * dir)
{
double fxyz[4][3];
F_coordP1(face,fxyz);
return XYZ_F_area(fxyz,dir);
}
// -------------------------------------------------------------------
//! Returns area of a triangular face \ingroup face
//! if 'dir' is not NULL, the area is signed
double XYZ_F_area(const double xyz[][3], const double * dir)
{
double areaSq = XYZ_F_areaSq(xyz, dir);
if ( areaSq >= 0. ) return sqrt(areaSq);
return -1.0 * sqrt ( -1.0*areaSq );
}
// -------------------------------------------------------------------
//! Returns square area of a triangular face. \ingroup face
//! if 'dir' is not NULL, the square area is signed
double F_areaSq(const pFace face, const double * dir)
{
double xyz[3][3];
F_coordP1(face,xyz);
return XYZ_F_areaSq(xyz,dir);
}
// -------------------------------------------------------------------
//! Returns square area of a triangular face with coordinates xyz. \ingroup face
//! if 'dir' is not NULL, the square area is signed
double XYZ_F_areaSq(const double xyz[][3], const double * dir)
{
double e01[3], e02[3], normal[3];
diffVec(xyz[1],xyz[0],e01);
diffVec(xyz[2],xyz[0],e02);
crossProd(e01,e02,normal);
if( dir && ( dotProd(dir,normal) < 0. ) ) {
return -0.25 * dotProd(normal,normal);
}
return 0.25 * dotProd(normal,normal);
}
// -------------------------------------------------------------------
//! Returns the center of a triangular linear face. \ingroup face
void F_center(const pFace face, double center[])
{
double fxyz[3][3];
F_coordP1(face,fxyz);
center[0] = MAdTHIRD * ( fxyz[0][0] + fxyz[1][0] + fxyz[2][0] );
center[1] = MAdTHIRD * ( fxyz[0][1] + fxyz[1][1] + fxyz[2][1] );
center[2] = MAdTHIRD * ( fxyz[0][2] + fxyz[1][2] + fxyz[2][2] );
}
// -------------------------------------------------------------------
//! Returns the coordinates (u,v) of the point in the parent element
void F_linearParams(const pFace pF, const double xyz[3],
double res[2])
{
// using barycentric coordinates
double fxyz[3][3];
F_coordP1(pF,fxyz);
Tri_linearParams(fxyz,xyz,res);
}
// -------------------------------------------------------------------
//! Computes the normal vector of the face \ingroup face
//! The normal is not normalized
void F_normal(const pFace face, double normal[3])
{
double xyz[4][3];
F_coordP1(face,xyz);
double v01[3],v02[3];
diffVec(xyz[1],xyz[0],v01);
diffVec(xyz[2],xyz[0],v02);
crossProd(v01,v02,normal);
}
// -------------------------------------------------------------------
//! Computes the normal vector of a triangle with given coordinates \ingroup face
//! The normal is not normalized
void XYZ_F_normal(const double xyz[3][3], double normal[3])
{
double v01[3],v02[3];
diffVec(xyz[1],xyz[0],v01);
diffVec(xyz[2],xyz[0],v02);
crossProd(v01,v02,normal);
}
// -------------------------------------------------------------------
//! Computes the ratio between the regions around the face \ingroup face
//! Returns false if there is less than 2 regions
bool F_volumeRatio(const pFace face, double * ratio)
{
const pRegion pr0 = F_region(face,0);
const pRegion pr1 = F_region(face,1);
if ( !( pr0 && pr1 ) ) return false;
double vol0 = R_volume(pr0);
double vol1 = R_volume(pr1);
if( vol0 <= 0. || vol1 <= 0. ) *ratio = -1.;
else *ratio = ( vol0 < vol1 ) ? vol1/vol0 : vol0/vol1;
return true;
}
// -------------------------------------------------------------------
//! Computes the maximal volume ratio among the faces \ingroup face
double F_worstVolumeRatio(const std::set<pFace> faces)
{
double maxRatio = 0.;
std::set<pFace>::const_iterator fIter = faces.begin();
for(; fIter != faces.end(); fIter++ ) {
double ratio;
if ( !F_volumeRatio(*fIter,&ratio) ) continue;
if( ratio < 0. ) return -1;
if( ratio > maxRatio ) maxRatio = ratio;
}
return maxRatio;
}
// -------------------------------------------------------------------
//! Returns the vertex of face opposite to edge \ingroup face
pVertex F_edOpVt(const pFace face, const pEdge edge)
{
assert(face->getNbEdges() == 3);
pVertex v0 = E_vertex(edge,0);
pVertex v1 = E_vertex(edge,1);
for (int iE=0; iE<3; iE++) {
pEdge pE = face->getEdge(iE);
if (pE==edge) continue;
pVertex pEv0 = E_vertex(pE,0);
if ( pEv0 != v0 && pEv0 != v1 ) return pEv0;
else return E_vertex(pE,1);
}
return NULL;
}
// -------------------------------------------------------------------
//! Returns the edge of face opposite to vertex \ingroup face
pEdge F_vtOpEd(const pFace face, const pVertex vertex)
{
assert(face->getNbEdges() == 3);
for (int iE=0; iE<3; iE++) {
pEdge pE = face->getEdge(iE);
if ( E_vertex(pE,0) != vertex &&
E_vertex(pE,1) != vertex ) {
return pE;
}
}
return NULL;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// Edge operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Dumps informations about the edge. \ingroup edge
void E_info(const pEdge edge, std::string name, std::ostream& out)
{
out << "\n";
out << "Edge \'" << name << "\' " << edge
<< ", id: " << EN_id((pEntity)edge) << "\n";
pGEntity pGE = EN_whatIn((pEntity)edge);
out << " - Classification: dim: " << GEN_type(pGE) << ", tag: " << GEN_tag(pGE) << "\n";
pVertex pv0 = E_vertex(edge,0);
pVertex pv1 = E_vertex(edge,1);
out << " - Vertices:\n"
<< " * Vertex 0:\n";
V_info(pv0, "", out);
out << " * Vertex 1:\n";
V_info(pv1, "", out);
out << "\n";
}
// -------------------------------------------------------------------
//! Returns the number of regions attached to the edge pe \ingroup edge
int E_numRegions(pEdge pe)
{
pPList rlist = E_regions(pe);
int num = PList_size(rlist);
PList_delete(rlist);
return num;
}
// -------------------------------------------------------------------
//! Returns the number of vertices in edge pe \ingroup edge
//! Guess what, there are two !
int E_numVertices(pEdge pe)
{
return 2;
}
// -------------------------------------------------------------------
//! Returns the n-th vertex of edge pe \ingroup edge
/*! \warning will throw an error for n>1 */
pVertex E_vertex(pEdge pe, int n)
{
switch(n){
case 0 : return pe->p1;
case 1 : return pe->p2;
}
throw;
}
// -------------------------------------------------------------------
//! Returns a list of the vertices of edge pe \ingroup edge
pPList E_vertices(const pEdge pe)
{
pPList vList;
PList_append(vList,pe->p1);
PList_append(vList,pe->p2);
return vList;
}
// -------------------------------------------------------------------
//! Returns the number of faces attached to edge pe \ingroup edge
int E_numFaces(pEdge pe)
{
return pe->numfaces() ;
}
// -------------------------------------------------------------------
//! Returns a list of regions attached to edge pe \ingroup edge
pPList E_regions(pEdge e)
{
pPList pl = PList_new();
for (int i=0;i<e->numfaces();++i)
{
pFace pf = e->faces(i);
for(int k=0;k<pf->getNbRegions();k++)
PList_appUnique(pl,pf->getRegion(k));
}
return pl;
}
// -------------------------------------------------------------------
//! Returns the number of higher-order points on edge pe, excluding vertices \ingroup edge
int E_numPoints(pEdge pE)
{
return pE->getNbHighOrderPoints ();
}
// -------------------------------------------------------------------
//! Returns the n-th face attached to edge pe \ingroup edge
pFace E_face(pEdge pe, int n)
{
return pe->faces(n);
}
// -------------------------------------------------------------------
//! Returns the list of faces connected to the edge \ingroup edge
pPList E_faces(const pEdge pe)
{
pPList eFaces = PList_new();
for (int iF=0; iF < pe->numfaces(); iF++) {
PList_append(eFaces,pe->faces(iF));
}
return eFaces;
}
// -------------------------------------------------------------------
//! Returns 1 of ent is one of the vertices of edge pe, else 0 \ingroup edge
int E_inClosure(pEdge pe, pEntity ent)
{
if (pe->p1 == ent) return 1;
if (pe->p2 == ent) return 1;
return 0;
}
// -------------------------------------------------------------------
//! Returns the first other face attached to edge pe found \ingroup edge
//! Warns if more than 2 faces around edge, returns NULL if no other face.
pFace E_otherFace(pEdge edge, pFace face)
{
int nF = edge->numfaces();
if ( nF > 2 ) {
MAdMsgSgl::instance().warning(__LINE__,__FILE__,
"There are more than 2 faces around this edge, returning the first candidate");
}
for (int i=0;i<nF;i++)
{
pFace pf = edge->faces(i);
if ( pf != face ) return pf;
}
return NULL;
}
// -------------------------------------------------------------------
//! Returns the other face attached to edge pe belonging to the closure of region r \ingroup edge
pFace E_otherFace(pEdge edge, pFace face, pRegion r)
{
for (int i=0;i<r->getNbFace();i++)
{
pFace f1 = r->getFace(i);
if (f1 != face && F_inClosure (f1,edge) ) return f1;
}
throw;
}
// -------------------------------------------------------------------
//! Returns the other vertex of edge pe \ingroup edge
pVertex E_otherVertex(pEdge e, pVertex v)
{
if(e->p1 == v)return e->p2;
if(e->p2 == v)return e->p1;
throw;
}
// -------------------------------------------------------------------
//! Returns the n-th higher order point - excluding vertices - of edge pe \ingroup edge
pPoint E_point(pEdge e, int n)
{
return e->getHighOrderPoint (n);
}
// -------------------------------------------------------------------
//! Returns the geometrical entity on which entity 'pe' is classified \ingroup entity
pGEntity EN_whatIn(pEntity pe)
{
return pe->g;
}
// -------------------------------------------------------------------
//! Returns the type/dimension of the geometrical entity on which edge pe is classified \ingroup edge
pGEntity E_whatIn(pEdge pe)
{
return pe->g;
}
// -------------------------------------------------------------------
//! Classify entity e on the geometrical entity 'what' \ingroup entity
void EN_setWhatIn(pEntity e, pGEntity what){e->g = what;}
// -------------------------------------------------------------------
//! Classify edge e on the geometrical entity 'what' \ingroup entity
void E_setWhatIn(pEdge edge, pGEntity what)
{
edge->g = what;
pPoint p1 = edge->p1;
if ( GEN_type(p1->g) > GEN_type(what) ) V_setWhatIn(p1,what);
pPoint p2 = edge->p2;
if ( GEN_type(p2->g) > GEN_type(what) ) V_setWhatIn(p2,what);
}
// -------------------------------------------------------------------
//! Returns the type/dimension of the geometrical entity on which edge pe is classified \ingroup edge
int E_whatInType(pEdge e) { return EN_whatInType(e);}
// -------------------------------------------------------------------
//! Aligns the current edge with the node order \ingroup edge
//! returns 1 if the edge is already aligned, -1 if the edge is inverted and 0 if the edge does not correspond
int E_align(pEdge pe,pVertex pv1,pVertex pv2) {return pe->align(pv1,pv2);}
// -------------------------------------------------------------------
//! Returns 1 of the edge is oriented from first vertex \ingroup edge
//! to second one, 0 otherwise
int E_dir(pEdge pe, pVertex pv1, pVertex pv2) {
if (pe->p1 == pv1 && pe->p2 == pv2) return 1;
if (pe->p1 == pv2 && pe->p2 == pv1) return 0;
throw;
}
// -------------------------------------------------------------------
//! Returns coordinates of vertices of the edge not including high-order points. \ingroup edge
void E_coordP1(const pEdge edge, double xyz[][3])
{
// points of extremities
MDB_Point * pP1 = edge->p1;
xyz[0][0] = P_x(pP1);
xyz[0][1] = P_y(pP1);
xyz[0][2] = P_z(pP1);
MDB_Point * pP2 = edge->p2;
xyz[1][0] = P_x(pP2);
xyz[1][1] = P_y(pP2);
xyz[1][2] = P_z(pP2);
}
// -------------------------------------------------------------------
//! Returns coordinates of vertices of the edge including high-order points. \ingroup edge
void E_coord(const pEdge edge, double xyz[][3])
{
E_coordP1(edge,xyz);
// points on edges (higher order nodes)
int n = E_numPoints(edge);
for (int i=0; i<n; i++) {
pPoint pnt = E_point(edge,i);
xyz[2+i][0] = P_x(pnt); xyz[2+i][1] = P_y(pnt); xyz[2+i][2] = P_z(pnt);
}
}
// -------------------------------------------------------------------
//! Gets the parametric coordinates of the summits of the edge \ingroup edge
//! in the geometric entity on which it is classified.
//! Returns false if parametric coordinates are not available.
bool E_params(const pEdge edge, double u[2][2])
{
#ifdef _HAVE_GMSH_
pGEntity edgeGE = E_whatIn(edge);
int gDim = GEN_type(edgeGE);
if ( gDim != 1 && gDim != 2 ) return false;
for (int iV=0; iV<2; iV++) {
pVertex pv = E_vertex(edge,iV);
pGEntity vG = EN_whatIn(pv);
int vGDim = GEN_type(vG);
// --------------------------------------------------------------------
// edge classified on a surface: we want the parameters on the surface
// --------------------------------------------------------------------
if ( gDim == 2 ) {
switch ( vGDim ) {
case 3: throw;
case 2: {
if ( !V_params(pv,&u[iV][0],&u[iV][1]) ) return false;
// printf("node on face %d: %lf %lf\n",GEN_tag(edgeGE),u[iV][0],u[iV][1]);
break;
}
case 1: {
double tmp0,tmp1;
if ( !V_params(pv,&tmp0,&tmp1) ) return false;
double * otherU = NULL;
if ( GE_isSeam( (pGEdge)vG, (pGFace)edgeGE ) )
{
pVertex otherV = E_vertex(edge,1-iV);
double tmp20,tmp21;
if ( V_whatInType(otherV)==2 && V_params(otherV,&tmp20,&tmp21) ) {
otherU = new double[2];
otherU[0] = tmp20;
otherU[1] = tmp21;
}
else if ( V_whatInType(otherV)==1 && V_params(otherV,&tmp20,&tmp21) ) {
if ( GE_isSeam( (pGEdge)V_whatIn(otherV), (pGFace)edgeGE ) ) {
MAdMsgSgl::instance().warning(__LINE__,__FILE__,
"Found a surface with 2 seams");
return false;
}
otherU = new double[2];
GE_reparamOnFace( (pGEdge)V_whatIn(otherV), (pGFace)edgeGE,
tmp20, &(otherU[0]) );
otherU[1] = -1.;
}
}
GE_reparamOnFace( (pGEdge)vG, (pGFace)edgeGE, tmp0, u[iV], otherU );
// printf("node from edge %d on face %d: %lf %lf\n",GEN_tag(vG),GEN_tag(edgeGE),u[iV][0],u[iV][1]);
break;
}
case 0: {
double tmp0,tmp1;
if ( !V_params(pv,&tmp0,&tmp1) ) return false;
double * otherU = NULL;
if ( GV_isOnSeam( (pGVertex)vG, (pGFace)edgeGE ) )
{
pVertex otherV = E_vertex(edge,1-iV);
double tmp20,tmp21;
if ( V_whatInType(otherV)==2 && V_params(otherV,&tmp20,&tmp21) ) {
otherU = new double[2];
otherU[0] = tmp20;
otherU[1] = tmp21;
}
else if ( V_whatInType(otherV)==1 && V_params(otherV,&tmp20,&tmp21) ) {
if ( GE_isSeam( (pGEdge)V_whatIn(otherV), (pGFace)edgeGE ) ) {
MAdMsgSgl::instance().warning(__LINE__,__FILE__,
"Found a surface with 2 seams");
return false;
}
otherU = new double[2];
GE_reparamOnFace( (pGEdge)V_whatIn(otherV), (pGFace)edgeGE,
tmp20, &(otherU[0]) );
otherU[1] = -1.;
}
}
GV_reparamOnFace( (pGVertex)vG, (pGFace)edgeGE, u[iV], otherU );
// printf("vert %d on face %d: %lf %lf\n",GEN_tag(vG),GEN_tag(edgeGE),u[iV][0],u[iV][1]);
break;
}
}
}
// --------------------------------------------------------------
// edge classified on a line: we want the parameters on the line
// --------------------------------------------------------------
else if ( gDim == 1) {
switch ( vGDim ) {
case 3: throw;
case 2: throw;
case 1: {
double tmp;
if ( !V_params(pv,&u[iV][0],&tmp) ) return false;
break;
}
case 0: {
if ( !(pv->isParametric() ) ) return false;
double otherU = -1.;
pVertex otherV = E_vertex(edge,1-iV);
double tmp20,tmp21;
if ( V_whatInType(otherV)==1 && V_params(otherV,&tmp20,&tmp21) ) {
otherU = tmp20;
}
else if ( V_whatInType(otherV)==0 ) {
GV_reparamOnEdge( (pGVertex)V_whatIn(otherV), (pGEdge)edgeGE, &otherU );
}
GV_reparamOnEdge( (pGVertex)vG, (pGEdge)edgeGE, &u[iV][0], otherU );
break;
}
}
}
else throw;
}
return true;
#else
return false;
#endif
}
// -------------------------------------------------------------------
//! Returns the physical length of the edge \ingroup edge
double E_length(const pEdge edge)
{
double eCoords[2][3];
E_coordP1(edge,eCoords);
double e[3];
diffVec(eCoords[1],eCoords[0],e);
return sqrt ( e[0]*e[0] + e[1]*e[1] + e[2]*e[2] );
}
// -------------------------------------------------------------------
//! Returns the physical square length of the edge \ingroup edge
double E_lengthSq(const pEdge edge)
{
double eCoords[2][3];
E_coordP1(edge,eCoords);
double e[3];
diffVec(eCoords[1],eCoords[0],e);
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
// -------------------------------------------------------------------
double E_linearParams(const pEdge pE,
const pVertex pv)
{
double xyz[3];
V_coord(pv,xyz);
return E_linearParams(pE,xyz);
}
// -------------------------------------------------------------------
double E_linearParams(const pEdge pE,
const double xyz[3])
{
double eCoords[2][3];
E_coordP1(pE,eCoords);
double v01[3];
diffVec(eCoords[1],eCoords[0],v01);
double vX1[3];
diffVec(eCoords[1],xyz,vX1);
double temp = dotProd(v01,vX1);
if ( temp < MAdTOL ) return 1.;
double v0X[3];
diffVec(xyz,eCoords[0],v0X);
double temp2 = dotProd(v01,v0X);
if ( temp2 < MAdTOL ) return 0.;
double ratio = temp2 / temp;
return ( ratio / (1. + ratio ) );
}
// -------------------------------------------------------------------
//! Returns the center of a linear edge. \ingroup edge
void E_center(const pEdge edge, double center[3])
{
double exyz[2][3];
E_coordP1(edge,exyz);
center[0] = 0.5 * ( exyz[0][0] + exyz[1][0] );
center[1] = 0.5 * ( exyz[0][1] + exyz[1][1] );
center[2] = 0.5 * ( exyz[0][2] + exyz[1][2] );
}
// -------------------------------------------------------------------
//! Returns the center of the cavity surrounding an edge. \ingroup edge
void E_cavityCenter(const pEdge edge, double center[3])
{
if( E_whatInType(edge)!=3 ) {
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"not implemented for edges classified on <3D");
}
center[0] = 0.; center[1] = 0.; center[2] = 0.;
int nbF = 0;
pPList vFaces = E_faces(edge);
void * temp = NULL;
while ( pFace face = (pFace)PList_next(vFaces,&temp) ) {
pVertex oppV = F_edOpVt(face,edge);
double xyz[3];
V_coord(oppV,xyz);
center[0] += xyz[0]; center[1] += xyz[1]; center[2] += xyz[2];
nbF++;
}
PList_delete(vFaces);
double invNbF = 1. / nbF;
center[0] *= invNbF; center[1] *= invNbF; center[2] *= invNbF;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// Vertex operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Dumps informations about the vertex. \ingroup vertex
void V_info(const pVertex vertex, std::string name, std::ostream& out)
{
out << "\n";
out << "Vertex \'" << name << "\' " << vertex
<< ", id: " << EN_id((pEntity)vertex) << "\n";
pGEntity pGE = EN_whatIn((pEntity)vertex);
out << " - Classification: dim: " << GEN_type(pGE) << ", tag: " << GEN_tag(pGE) << "\n";
out << " - Num edges: " << vertex->edges.size() << "\n";
out << " - Parameters:\n";
double u,v;
if ( vertex->getParams(&u,&v) ) {
out << " Point is parametric: (u,v) = ("<<u<<", "<<v<<")\n";
}
else {
out <<" Point is not parametric\n";
}
out << " - Coordinates:\n";
double xyz[3];
V_coord(vertex,xyz);
out << " ( "<<xyz[0]<<", "<<xyz[1]<<", "<<xyz[2]<<" )\n";
out << "\n";
}
// -------------------------------------------------------------------
//! Returns the type/dimension of the geometrical entity on which vertex e is classified \ingroup vertex
int V_whatInType(pVertex e)
{
return EN_whatInType(e);
}
// -------------------------------------------------------------------
//! Classify vertex e on the geometrical entity 'what' \ingroup vertex
void V_setWhatIn(pVertex e, pGEntity what)
{
e->g = what;
}
// -------------------------------------------------------------------
//! Returns the geometrical entity on which vertex pv is classified \ingroup vertex
pGEntity V_whatIn(pVertex pv)
{
return pv->g;
}
// -------------------------------------------------------------------
//! Returns the list of regions attached to vertex v \ingroup vertex
pPList V_regions(pVertex v)
{
// 3D SPECIFIC printf("coucou\n");
pPList pl = PList_new();
for (unsigned int i=0;i<v->edges.size();++i)
{
pEdge pe = v->edges[i];
for (int j=0;j<pe->numfaces();j++)
{
pFace pf = pe->faces(j);
for(int k=0;k<pf->getNbRegions();k++)
PList_appUnique(pl,pf->getRegion(k));
}
}
return pl;
}
// -------------------------------------------------------------------
//! Copies the coordinates of vertex pv in point \ingroup vertex
pPoint V_point(pVertex pv)
{
return pv;
}
// -------------------------------------------------------------------
//! Returns number of edges attached to vertex pv \ingroup vertex
int V_numEdges(pVertex pv)
{
return pv->edges.size();
}
// -------------------------------------------------------------------
//! Returns number of faces attached to vertex pv \ingroup vertex
int V_numFaces(pVertex pv)
{
pPList faces = V_faces(pv);
int num = PList_size(faces);
PList_delete(faces);
return num;
}
// -------------------------------------------------------------------
//! Returns number of regions attached to vertex pv \ingroup vertex
int V_numRegions(pVertex pv)
{
pPList regions = V_regions(pv);
int num = PList_size(regions);
PList_delete(regions);
return num;
}
// -------------------------------------------------------------------
//! Returns n-th edge attached to vertex pv \ingroup vertex
pEdge V_edge(pVertex pv, int n)
{
return pv->edges[n];
}
// -------------------------------------------------------------------
//! Returns the identity tag of the vertex pv \ingroup vertex
int V_id(const pVertex pv) {
return pv->iD;
}
// -------------------------------------------------------------------
//! Copy position of vertex p to xyz \ingroup vertex
void V_coord(const pVertex p, double xyz[3])
{
xyz[0] = p->X;
xyz[1] = p->Y;
xyz[2] = p->Z;
}
// -------------------------------------------------------------------
//! Gets the parametric coordinates of the vertex. \ingroup vertex
//! Returns false is the vertex is not parametric.
bool V_params(pVertex pv, double * u, double * v)
{
return pv->getParams(u,v);
}
// -------------------------------------------------------------------
//! Return the list of faces attached to vertex v \ingroup vertex
pPList V_faces(pVertex v)
{
pPList pl = PList_new();
for (unsigned int i=0;i<v->edges.size();++i)
{
pEdge pe = v->edges[i];
for (int j=0;j<pe->numfaces();j++)
{
pFace pf = pe->faces(j);
PList_appUnique(pl,pf);
}
}
return pl;
}
// -------------------------------------------------------------------
//! Return the list of edges attached to vertex v \ingroup vertex
pPList V_edges(pVertex v)
{
pPList pl = PList_new();
for (unsigned int i=0; i<v->edges.size(); ++i) {
pEdge pe = v->edges[i];
PList_append(pl,pe);
}
return pl;
}
// -------------------------------------------------------------------
//! Compute the mean length square of the edges adjacent to the vertex \ingroup vertex
double V_meanEdgeLenSq(const pVertex pv)
{
double lenSq = 0.;
for( int iE=0; iE<V_numEdges(pv); iE++ ) {
lenSq += E_lengthSq( V_edge(pv,iE) );
}
lenSq /= V_numEdges(pv);
return lenSq;
}
// -------------------------------------------------------------------
//! Returns the center of the cavity surrounding a vertex. \ingroup vertex
void V_cavityCenter(const pVertex vertex, double center[3])
{
center[0] = 0.; center[1] = 0.; center[2] = 0.;
int nbE = 0;
pPList vEdges = V_edges(vertex);
void * temp = NULL;
while ( pEdge edge = (pEdge)PList_next(vEdges,&temp) ) {
pVertex otherV = E_otherVertex(edge,vertex);
double xyz[3];
V_coord(otherV,xyz);
center[0] += xyz[0]; center[1] += xyz[1]; center[2] += xyz[2];
nbE++;
}
PList_delete(vEdges);
double invNbE = 1. / nbE;
center[0] *= invNbE; center[1] *= invNbE; center[2] *= invNbE;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// Point operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Returns x coordinate of point p \ingroup point
double P_x(pPoint p){return p->X;}
// -------------------------------------------------------------------
//! Returns y coordinate of point p \ingroup point
double P_y(pPoint p){return p->Y;}
// -------------------------------------------------------------------
//! Returns z coordinate of point p \ingroup point
double P_z(pPoint p){return p->Z;}
// -------------------------------------------------------------------
//! Deletes point p \ingroup point
void P_delete(pPoint p)
{
delete p;
}
// -------------------------------------------------------------------
//! Sets the coordinates of point p \ingroup point
void P_setPos(pPoint p , double x, double y, double z)
{
p->X = x;
p->Y = y;
p->Z = z;
}
// -------------------------------------------------------------------
//! Sets the identity of point p \ingroup point
void P_setID(pPoint p, int id){p->iD = id;}
// -------------------------------------------------------------------
//! Returns the identity of point p \ingroup point
int P_id(pPoint p){return p->iD;}
// -------------------------------------------------------------------
double P_param1(pPoint p)
{
pMeshDataId id = MD_lookupMeshDataId("_param1");
double pp;
EN_getDataDbl(p, id,&pp);
return pp;
}
// -------------------------------------------------------------------
void P_setParam1(pPoint p, double param)
{
pMeshDataId id = MD_lookupMeshDataId("_param1");
EN_attachDataDbl(p, id, param);
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// Entity operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
//! Print informations about the entity
void EN_info(const pEntity e, std::string name, std::ostream& out)
{
switch ( EN_type(e) ) {
case 3: R_info((pRegion)e,name,out);
case 2: F_info((pFace)e, name,out);
case 1: E_info((pEdge)e, name,out);
case 0: V_info((pVertex)e,name,out);
}
}
// -------------------------------------------------------------------
//! Returns the identity tag for entity e \ingroup entity
int EN_id(pEntity pe)
{
return pe->iD;
}
// -------------------------------------------------------------------
//! Sets the identity tag for entity e \ingroup entity
void EN_setID(pEntity pe, int id){
pe->iD=id;
}
// -------------------------------------------------------------------
//! Returns the type(dimension) of the geometrical entity on which entity e is classified \ingroup entity
int EN_whatInType(pEntity e){return GEN_type(e->g);}
// -------------------------------------------------------------------
//! Returns the number of vertices in the entity \ingroup entity
int EN_numVertices(const pEntity e)
{
switch ( EN_type(e) ) {
case 3: return R_numVertices((pRegion)e);
case 2: return F_numVertices((pFace)e);
case 1: return E_numVertices((pEdge)e);
case 0: return 1;
}
return -1;
}
// -------------------------------------------------------------------
//! Returns the list of the vertices of the entity \ingroup entity
pPList EN_vertices(const pEntity e)
{
pPList vList;
switch ( EN_type(e) ) {
case 3: { vList = R_vertices((pRegion)e); break; }
case 2: { vList = F_vertices((pFace)e,1); break; }
case 1: { vList = E_vertices((pEdge)e); break; }
case 0: { vList = PList_new(); PList_append(vList,e); break; }
}
return vList;
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
/* mesh entity creation routines */
//! Creates a region, classified on gent, in mesh m using specified faces \ingroup mesh
pRegion M_createR(pMesh mesh, int nFace, pFace faces[], pGEntity gent)
{
pRegion pr(0);
switch(nFace)
{
case 4 : pr = mesh->add_tet((MDB_Triangle*)faces[0], (MDB_Triangle*)faces[1],
(MDB_Triangle*)faces[2], (MDB_Triangle*)faces[3],
gent);
break;
case 5 : pr = mesh->add_prism((MDB_Triangle*)faces[0], (MDB_Triangle*)faces[1],
(MDB_Quad*)faces[2], (MDB_Quad*)faces[3],
(MDB_Quad*)faces[4], gent);
break;
case 6 : pr = mesh->add_hex((MDB_Quad*)faces[0], (MDB_Quad*)faces[1],
(MDB_Quad*)faces[2], (MDB_Quad*)faces[3],
(MDB_Quad*)faces[4], (MDB_Quad*)faces[5],gent);
break;
}
return pr;
}
//! Creates a region, classified on gent, in mesh m using specified vertices \ingroup mesh
pRegion M_createR(pMesh mesh, int nVert, pVertex verts[], pGEntity gent)
{
pRegion pr(0);
switch(nVert)
{
case 4 : pr = mesh->add_tet(verts[0], verts[1], verts[2], verts[3],
gent);
break;
case 6 : pr = mesh->add_prism(verts[0], verts[1], verts[2],
verts[3], verts[4], verts[5],
gent);
break;
case 8 : pr = mesh->add_hex(verts[0], verts[1], verts[2], verts[3],
verts[4], verts[5], verts[6], verts[7],
gent);
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Not a valid number of vertices: %d",
nVert);
}
return pr;
}
//! Creates a region, classified on gent, in mesh m using specified vertices \ingroup mesh
pRegion M_createR(pMesh mesh, int nVert, int vId[], pGEntity gent)
{
pRegion pr(0);
switch(nVert)
{
case 4 : pr = mesh->add_tet(vId[0], vId[1], vId[2], vId[3],
gent);
break;
case 6 : pr = mesh->add_prism(vId[0], vId[1], vId[2],
vId[3], vId[4], vId[5],
gent);
break;
case 8 : pr = mesh->add_hex(vId[0], vId[1], vId[2], vId[3],
vId[4], vId[5], vId[6], vId[7],
gent);
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Not a valid number of vertices: %d",
nVert);
}
return pr;
}
//! Creates a high order region, classified on gent, in mesh m using
//! specified vertices \ingroup mesh
pRegion M_createTet(pMesh m, int order, bool serendip, int vId[], pGEntity gent)
{
return m->add_tet(gent,order,serendip,vId);
}
//! Creates a face, classified on gent, in mesh m using specified edges \ingroup mesh
/*! \warning currently only implemented for triangles */
pFace M_createF(pMesh mesh, int nEdge, pEdge edges[], pGEntity gent)
{
pFace pf(0);
switch(nEdge)
{
case 3: pf = mesh->add_triangle (edges[0], edges[1], edges[2], gent);
break;
case 4: pf = mesh->add_quad (edges[0], edges[1], edges[2], edges[3], gent);
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Not a valid number of edges: %d", nEdge);
}
return pf;
}
//! Creates a face, classified on gent, in mesh m using specified vertices \ingroup mesh
pFace M_createF(pMesh mesh, int nVert, pVertex verts[], pGEntity gent)
{
pFace pf(0);
switch(nVert)
{
case 3: pf = mesh->add_triangle (verts[0], verts[1], verts[2], gent);
break;
case 4: pf = mesh->add_quad (verts[0], verts[1], verts[2], verts[3], gent);
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Not a valid number of vertices: %d", nVert);
}
return pf;
}
//! Creates a face, classified on gent, in mesh m using specified vertices \ingroup mesh
pFace M_createF(pMesh mesh, int nVert, int vId[], pGEntity gent)
{
pFace pf(0);
switch(nVert)
{
case 3: pf = mesh->add_triangle (vId[0], vId[1], vId[2], gent);
break;
case 4: pf = mesh->add_quad (vId[0], vId[1], vId[2], vId[3], gent);
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Not a valid number of vertices: %d", nVert);
}
return pf;
}
//! Creates a complete high order triangle, classified on gent, in mesh m using
//! specified vertices \ingroup mesh
//! template is the following v0 ho[v0->v1] v1 ho[v1->v2] v2 ho[v2->v0]
pFace M_createTri(pMesh mesh, int order, int vId[], pGEntity gent)
{
pFace pf(0);
switch(order)
{
case 1: pf = mesh->add_triangle (vId[0], vId[1], vId[2], gent);
break;
case 2: pf = mesh->add_triangle (order, true, gent,
vId[0], vId[1], vId[2],
vId[3], vId[4], vId[5] );
break;
case 3: pf = mesh->add_triangle (order, true, gent,
vId[0], vId[1], vId[2],
vId[3], vId[4], vId[5],
vId[6], vId[7], vId[8], vId[9] );
break;
case 4: pf = mesh->add_triangle (order, true, gent,
vId[0], vId[1], vId[2],
vId[3], vId[4], vId[5],
vId[6], vId[7], vId[8], vId[9],
vId[10], vId[11], vId[12], vId[13], vId[14] );
break;
default:
MAdMsgSgl::instance().error(__LINE__,__FILE__,
"Complete triangles not defined for order %d",
order);
}
return pf;
}
//! Create a first order edge, classified on ent, in mesh 'mesh' using
//! specified vertices \ingroup mesh
pEdge M_createE(pMesh mesh, pVertex v1, pVertex v2, pGEntity ent)
{
return mesh->add_edge (v1,v2,ent);
}
//! Create a first order edge, classified on ent, in mesh 'mesh' using
//! specified vertices \ingroup mesh
pEdge M_createE(pMesh mesh, int id1, int id2, pGEntity ent)
{
return mesh->add_edge (id1,id2,ent);
}
//! Create a high order edge, classified on ent, in mesh 'mesh' using
//! specified vertices \ingroup mesh
pEdge M_createE(pMesh mesh, pVertex v1, pVertex v2, int order,
pVertex internalPoints[], pGEntity ent)
{
return mesh->add_edge(v1,v2,ent,order,internalPoints);
}
pVertex M_createV(pMesh mesh, double x, double y, double z,
int patch, pGEntity ent)
{
return mesh->add_point (patch,x,y,z,ent);
}
pVertex M_createV2(pMesh mesh, double xyz[3],int patch, pGEntity ent)
{
return M_createV(mesh,xyz[0],xyz[1],xyz[2],patch,ent);
}
pVertex M_createVP(pMesh mesh, double x, double y, double z,
double u, double v, int patch, pGEntity ent)
{
return mesh->add_pointParam (patch,x,y,z,u,v,ent);
}
/* mesh entity deletion routines */
//! Removes a region from the mesh, deletes it \ingroup mesh
void M_removeRegion(pMesh m, pRegion region)
{
if (dynamic_cast<MDB_Tet*>(region)) m->del_tet((MDB_Tet*)region);
else if (dynamic_cast<MDB_Hex*>(region)) m->del_hex((MDB_Hex*)region);
else if (dynamic_cast<MDB_Prism*>(region)) m->del_prism((MDB_Prism*)region);
}
//! Removes a face from the mesh, deletes it \ingroup mesh
/*! \warning currently only implemented for triangles */
void M_removeFace(pMesh m, pFace face)
{
m->del_triangle((MDB_Triangle*)face);
}
//! Removes an edge from the mesh, deletes it \ingroup mesh
void M_removeEdge(pMesh m, pEdge edge)
{
m->del_edge (edge);
}
//! Removes a vertex from the mesh, deletes it \ingroup mesh
void M_removeVertex(pMesh m, pVertex vertex)
{
m->del_point(vertex);
}
//! Return edge between two vertices, if not found returns 0 \ingroup mesh
pEdge E_exist(pVertex v1, pVertex v2)
{
MDB_VectorE edges = v1->edges;
MDB_VectorE::iterator it = edges.begin();
MDB_VectorE::iterator ite = edges.end();
while(it!=ite){
pVertex p = (*it)->othervertex(v1);
if(p==v2) return((*it));
++it;
}
return 0;
}
//! Returns triangle defined by an edge and a vertex. Returns 0 if not found. \ingroup mesh
pFace F_exist(pEdge edge, pVertex vertex)
{
for (int iF=0; iF<edge->numfaces(); iF++) {
MDB_Face * face = edge->faces(iF);
if(face->getNbEdges()!=3)
continue;
MDB_Triangle *tri=(MDB_Triangle*) face;
MDB_Edge * otherE = tri->e1;
if ( otherE == edge) otherE = tri->e2;
if ( otherE->p1 == vertex || otherE->p2 == vertex ) {
if ( edge->p1 == vertex || edge->p2 == vertex ) {
F_info(tri);
MAdMsgSgl::instance().error(__LINE__,__FILE__,"Bad triangle or bad input (edge: %p, vertex: %p)",
edge,vertex);
}
return tri;
}
}
return NULL;
}
//! Returns face defined by at most 4 entities, return 0 on failure \ingroup mesh
/*! entities e1..4 may be either vertices or edges */
pFace F_exist(pEntity e1, pEntity e2, pEntity e3, pEntity e4){
int typeEnt = EN_type(e1);
switch(typeEnt) {
case 0:
{ pVertex p1 = (pVertex) e1;
pVertex p2 = (pVertex) e2;
pVertex p3 = (pVertex) e3;
pVertex p4 = (pVertex) e4;
MDB_ListFace listFaces;
p1->getFaces(listFaces);
MDB_ListFace::iterator it = listFaces.begin();
MDB_ListFace::iterator ite = listFaces.end();
while(it!=ite){
pVertex p[4]={NULL,NULL,NULL,NULL};
(*it)->getNodes(p);
if ( (p[0]==p1 || p[0]==p2 || p[0]==p3 || p[0]==p4)
&& (p[1]==p1 || p[1]==p2 || p[1]==p3 || p[1]==p4)
&& (p[2]==p1 || p[2]==p2 || p[2]==p3 || p[2]==p4)
&& (p[3]==p1 || p[3]==p2 || p[3]==p3 || p[3]==p4))
return (*it);
++it;
}
return 0;
}
break;
case 1:
{
pEdge ped1 = (pEdge) e1;
pEdge ped2 = (pEdge) e2;
pEdge ped3 = (pEdge) e3;
pEdge ped4 = (pEdge) e4;
for(int k=0 ; k<ped1->numfaces() ; k++) {
pFace pface = ped1->faces(k);
if ((pface->getEdge(0)==ped1 || pface->getEdge(1)==ped1 || pface->getEdge(2)==ped1 || pface->getEdge(3)==ped1)
&&(pface->getEdge(0)==ped2 || pface->getEdge(1)==ped2 || pface->getEdge(2)==ped2 || pface->getEdge(3)==ped2)
&&(pface->getEdge(0)==ped3 || pface->getEdge(1)==ped3 || pface->getEdge(2)==ped3 || pface->getEdge(3)==ped3)
&&(pface->getEdge(0)==ped4 || pface->getEdge(1)==ped4 || pface->getEdge(2)==ped4 || pface->getEdge(3)==ped4))
return (pface);
}
return 0;
}
break;
default:
throw;
}
return 0;
}
/* deprecated (rather use ModelInterface) */
void M_setGeomFeature(pMesh m, int tag, pGEntity geom)
{
bool found = false;
std::multimap<int, pGEntity>::iterator it;
for (it = m->geomFeatures_Tags.lower_bound(tag);
it != m->geomFeatures_Tags.upper_bound(tag);++it)
if (it->second == geom) found = true;
if (!found)
m->geomFeatures_Tags.insert(std::pair<int,pGEntity>(tag, geom));
}
//! Returns the number of geometric entities associated to the mesh \ingroup mesh
int M_numGeomFeatures (pMesh pm)
{
return pm->geomFeatures_Tags.size();
}
//! Returns the id tag of the n-th geometric entity associated to the mesh \ingroup mesh
int M_geomFeatureId (pMesh pm, int n)
{
int count = 0;
for (std::multimap<int, pGEntity>::iterator it = pm->geomFeatures_Tags.begin();
it != pm->geomFeatures_Tags.end();
++it)
{
if (count++ == n) return it->first;
}
throw;
}
//! Returns the number of geometric entities associated to the mesh with tag id \ingroup mesh
/*! \warning id's are only guaranteed to be unique per type of geometric feature */
pPGList M_geomFeature (pMesh pm, int id)
{
pPGList pl = PGList_new();
for (std::multimap<int, pGEntity>::iterator it = pm->geomFeatures_Tags.lower_bound(id) ;
it != pm->geomFeatures_Tags.upper_bound(id) ; ++it)
PGList_append(pl,it->second);
return pl;
}
//! Print a list of geometric entities attached to the mesh to standard output \ingroup mesh
/*! \warning id's are only guaranteed to be unique per type of geometric feature */
void M_printGeomFeatures (pMesh pm)
{
std::cout << "\nPrinting geometric features: \n\n";
std::multimap<int, pGEntity>::iterator it = pm->geomFeatures_Tags.begin();
std::multimap<int, pGEntity>::iterator itEnd = pm->geomFeatures_Tags.end();
for (;it != itEnd; it++) {
std::cout << "geometric id: " << it->first << " geometric entity: " << it->second << "\n";
}
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
// PList operators
// -------------------------------------------------------------------
// -------------------------------------------------------------------
PList * PList_new()
{
return new PList();
}
// -------------------------------------------------------------------
void PList_delete(PList * lst)
{
if (lst) delete lst;
lst = NULL;
}
// -------------------------------------------------------------------
void PList_clear(PList * lst)
{
lst->clear();
}
// -------------------------------------------------------------------
PList * PList_appUnique(PList * lst, MDB_MeshEntity * ent)
{
for ( unsigned int i=0; i<lst->entities.size(); i++ ) {
if ( lst->entities[i] == ent ) return lst;
}
lst->entities.push_back(ent);
return lst;
}
// -------------------------------------------------------------------
PList * PList_appPListUnique(PList * lst, PList * source)
{
for ( unsigned int iSrc=0; iSrc<source->entities.size(); iSrc++ ) {
PList_appUnique(lst,source->entities[iSrc]);
}
return lst;
}
// -------------------------------------------------------------------
PList * PList_append(PList * lst, MDB_MeshEntity * ent)
{
lst->entities.push_back(ent);
return lst;
}
// -------------------------------------------------------------------
int PList_size(PList * lst)
{
return lst->entities.size();
}
// -------------------------------------------------------------------
MDB_MeshEntity * PList_item(PList * lst, int i)
{
return lst->entities[i];
}
// -------------------------------------------------------------------
MDB_MeshEntity * PList_next(PList * lst, void **restart)
{
if( *(int*)(restart) >= (int)lst->entities.size() ) return NULL;
return lst->entities[(*(int*)(restart))++];
}
// -------------------------------------------------------------------
int PList_inList(PList * lst, MDB_MeshEntity * ent)
{
for ( unsigned int i=0; i<lst->entities.size(); i++ ) {
if ( lst->entities[i] == ent ) return 1;
}
return 0;
}
// -------------------------------------------------------------------
void PList_remItem(PList * lst, MDB_MeshEntity * ent)
{
std::vector<MDB_MeshEntity *>::iterator eIter = lst->entities.begin();
for (; eIter != lst->entities.end() ; eIter++) {
if ( *eIter == ent ) lst->entities.erase(eIter);
}
}
// -------------------------------------------------------------------
// -------------------------------------------------------------------
}
|