1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/* A C-program for MT19937: Real number version (1998/4/6) */
/* genrand() generates one pseudorandom real number (double) */
/* which is uniformly distributed on [0,1]-interval, for each */
/* call. sgenrand(seed) set initial values to the working area */
/* of 624 words. Before genrand(), sgenrand(seed) must be */
/* called once. (seed is any 32-bit integer except for 0). */
/* Integer generator is obtained by modifying two lines. */
/* Coded by Takuji Nishimura, considering the suggestions by */
/* Topher Cooper and Marc Rieffel in July-Aug. 1997. */
/* This library is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public */
/* License as published by the Free Software Foundation; either */
/* version 2 of the License, or (at your option) any later */
/* version. */
/* This library is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* See the GNU Library General Public License for more details. */
/* You should have received a copy of the GNU Library General */
/* Public License along with this library; if not, write to the */
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
/* 02111-1307 USA */
/* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */
/* When you use this, send an email to: matumoto@math.keio.ac.jp */
/* with an appropriate reference to your work. */
/* REFERENCE */
/* M. Matsumoto and T. Nishimura, */
/* "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform */
/* Pseudo-Random Number Generator", */
/* ACM Transactions on Modeling and Computer Simulation, */
/* Vol. 8, No. 1, January 1998, pp 3--30. */
#include<math.h>
#include<stdlib.h>
unsigned short mtRand_xsubi[3] = {723, 32761, 44444};
#define mtRand_CC
#include"mt_random.h"
/* Period parameters */
#define M 397
#define MATRIX_A 0x9908b0df /* constant vector a */
#define UPPER_MASK 0x80000000 /* most significant w-r bits */
#define LOWER_MASK 0x7fffffff /* least significant r bits */
/* Tempering parameters */
#define TEMPERING_MASK_B 0x9d2c5680
#define TEMPERING_MASK_C 0xefc60000
#define TEMPERING_SHIFT_U(y) (y >> 11)
#define TEMPERING_SHIFT_S(y) (y << 7)
#define TEMPERING_SHIFT_T(y) (y << 15)
#define TEMPERING_SHIFT_L(y) (y >> 18)
/* initializing the array with a NONZERO seed */
void mtRand::sgenrand(unsigned long seed)
{
/* setting initial seeds to mt[N] using */
/* the generator Line 25 of Table 1 in */
/* [KNUTH 1981, The Art of Computer Programming */
/* Vol. 2 (2nd Ed.), pp102] */
mt[0]= seed & 0xffffffff;
for (mti=1; mti<mtRand_N; mti++)
mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
/* Using seeds that are derived from the above
generator to seed sgenrand leads to shifted
series. Furthermore, the least-significant bit
is always odd, or always even.
The following code should prevent that. The
random generator used is more or less arbitrary, but
it has a reasonably long period (1825731182) and
should generate well-mixed bit-streams. */
unsigned long s = 373737;
for (mti=1; mti<mtRand_N; mti++)
{
mt[mti] ^= s;
s = s * 5531 + 81547;
s ^= (s >> 9) ^ (s << 19);
}
}
double mtRand:: gendrand()
{
unsigned long y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= mtRand_N) { /* generate mtRand_N words at one time */
int kk;
for (kk=0;kk<mtRand_N-M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
}
for (;kk<mtRand_N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-mtRand_N)] ^ (y >> 1) ^ mag01[y & 0x1];
}
y = (mt[mtRand_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[mtRand_N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= TEMPERING_SHIFT_U(y);
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ^= TEMPERING_SHIFT_L(y);
return ((double)y * 2.3283064370807974e-10); /* reals */
}
unsigned long mtRand::genlrand()
{
unsigned long y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= mtRand_N) { /* generate mtRand_N words at one time */
int kk;
for (kk=0;kk<mtRand_N-M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
}
for (;kk<mtRand_N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-mtRand_N)] ^ (y >> 1) ^ mag01[y & 0x1];
}
y = (mt[mtRand_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[mtRand_N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= TEMPERING_SHIFT_U(y);
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ^= TEMPERING_SHIFT_L(y);
return y;
}
|