1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/*
MACLIB: A companion library to SDL for working with Macintosh (tm) data
Copyright (C) 1997-2021 Sam Lantinga <slouken@libsdl.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Microsoft WAVE file loading routines */
#include <stdlib.h>
#include <string.h>
#include "SDL_endian.h"
#include "SDL_rwops.h"
#include "Mac_Wave.h"
#if SDL_BYTEORDER == SDL_BIG_ENDIAN
#define wavesex32(x) \
((x << 24) | ((x & 0xff00) << 8) | ((x >> 8) & 0xff00) | (x >> 24))
#define wavesex16(x) ((x << 8) | (x >> 8))
#define snd_sex32(x) (x)
#define snd_sex16(x) (x)
#else
#define wavesex32(x) (x)
#define wavesex16(x) (x)
#define snd_sex32(x) \
((x << 24) | ((x & 0xff00) << 8) | ((x >> 8) & 0xff00) | (x >> 24))
#define snd_sex16(x) ((x << 8) | (x >> 8))
#endif /* Endianness */
/*******************************************/
/* Define values for Macintosh SND format */
/*******************************************/
/* Different sound header formats */
#define FORMAT_1 0x0001
#define FORMAT_2 0x0002
/* The different types of sound data */
#define SAMPLED_SND 0x0005
/* Initialization commands */
#define MONO_SOUND 0x00000080
#define STEREO_SOUND 0x000000A0
/* The different sound commands; we only support BUFFER_CMD */
#define SOUND_CMD 0x8050 /* Different from BUFFER_CMD? */
#define BUFFER_CMD 0x8051
/* Different original sampling rates -- rate = (#define)>>16 */
#define rate44khz 0xAC440000 /* 44100.0 */
#define rate22khz 0x56EE8BA3 /* 22254.5 */
#define rate11khz 0x2B7745D0 /* 11127.3 */
#define rate11khz2 0x2B7745D1 /* 11127.3 (?) */
#define stdSH 0x00
#define extSH 0xFF
#define cmpSH 0xFE
/*******************************************/
#define snd_copy16(V, D) \
{ \
V = *((Uint16 *)D); \
D += 2; \
V = snd_sex16(V); \
}
#define snd_copy32(V, D) \
{ \
memcpy(&V, D, sizeof(Uint32)); \
D += 4; \
V = snd_sex32(V); \
}
/*******************************************/
void
Wave:: Init(void) {
sound_data = NULL;
errstr = NULL;
}
void
Wave:: Free(void) {
if ( sound_data ) {
delete[] sound_data;
sound_data = NULL;
}
}
int
Wave:: Load(const char *wavefile, Uint16 desired_rate)
{
Uint8 *samples;
/* Free any existing WAVE data */
Free();
Init();
/* Load the WAVE file */
if ( SDL_LoadWAV(wavefile, &spec, &samples, &sound_datalen) == NULL ) {
error("%s", SDL_GetError());
return(-1);
}
/* Copy malloc()'d data to new'd data */
sound_data = new Uint8[sound_datalen];
memcpy(sound_data, samples, sound_datalen);
SDL_FreeWAV(samples);
/* Set the desired sample frequency */
Frequency(desired_rate);
/* Rewind and go! */
Rewind();
return(0);
}
Uint32
Wave:: Frequency(Uint16 desired_rate)
{
if ( (desired_rate > 0) && (desired_rate != spec.freq) ) {
Uint8 *samples;
Uint32 datalen, samplesize;
samples = sound_data;
samplesize = SampleSize();
datalen = ConvertRate(spec.freq, desired_rate,
&samples, sound_datalen/samplesize, samplesize);
if ( samples != sound_data ) {
/* Create new sound data */
delete[] sound_data;
sound_data = samples;
sound_datalen = datalen*samplesize;
/* Adjust the format */
spec.freq = desired_rate;
}
}
return(spec.freq);
}
/* Most of this information came from the "Inside Macintosh" book series */
int
Wave:: Load(Mac_ResData *snd, Uint16 desired_rate)
{
Uint8 *data;
Uint8 *samples;
Uint16 snd_version;
int snd_channels;
/* Free any existing WAVE data */
Free();
Init();
/* Start loading the WAVE from the SND */
data = snd->data;
snd_copy16(snd_version, data);
snd_channels = 1; /* Is this always true? */
if ( snd_version == FORMAT_1 ) {
Uint16 n_types; /* Number of sound data types */
Uint16 f_type; /* First sound data type */
Uint32 init_op; /* Initialization option (unused) */
snd_copy16(n_types, data);
if ( n_types != 1 ) {
error("Multi-type sound not supported");
return(-1);
}
snd_copy16(f_type, data);
if ( f_type != SAMPLED_SND ) {
error("Not a sampled sound resource");
return(-1);
}
snd_copy32(init_op, data);
} else if ( snd_version == FORMAT_2 ) {
Uint16 ref_cnt; /* (unused) */
snd_copy16(ref_cnt, data);
} else {
error("Unknown sound format: 0x%X", snd_version);
return(-1);
}
/* Next is the Sound commands section */
{
Uint16 num_cmds; /* Number of sound commands */
Uint16 command; /* The first sound command */
Uint16 param1; /* BUFFER_CMD parameter 1 */
Uint32 param2; /* Offset to sampled data */
snd_copy16(num_cmds, data);
if ( num_cmds != 1 ) {
error("Multi-command sound not supported");
return(-1);
}
snd_copy16(command, data);
if ( (command != BUFFER_CMD) && (command != SOUND_CMD) ) {
error("Unknown sound command: 0x%X\n", command);
return(-1);
}
snd_copy16(param1, data);
/* Param1 is ignored (should be 0x0000) */
snd_copy32(param2, data);
/* Set 'data' to the offset of the sampled data */
if ( param2 > snd->length ) {
error("Offset too large -- corrupt sound?");
return(-1);
}
data = snd->data+param2;
}
/* Next is the sampled sound header */
{
Uint32 sample_offset;
Uint32 num_samples;
Uint32 sample_rate;
Uint32 loop_start, loop_end;
Uint8 encoding;
Uint8 freq_base;
snd_copy32(sample_offset, data);
/* FIXME: What's the interpretation of this offset? */
if ( sample_offset != 0 ) {
error("Sound samples don't immediately follow header");
return(-1);
}
snd_copy32(num_samples, data);
snd_copy32(sample_rate, data);
/* Sound loops are ignored for now */
snd_copy32(loop_start, data);
snd_copy32(loop_end, data);
encoding = *data++;
if ( encoding != stdSH ) {
error("Non-standard sound encoding: 0x%X", encoding);
return(-1);
}
/* Frequency base might be used later */
freq_base = *data++;
/* Now allocate room for the sound */
if ( num_samples > snd->length-(data-snd->data) ) {
error("truncated sound resource");
return(-1);
}
/* Convert the audio data to desired sample rates */
samples = data;
switch ( sample_rate ) {
case rate11khz:
case rate11khz2:
/* Assuming 8-bit mono samples */
if ( desired_rate == 0 )
desired_rate = 11025;
num_samples =
ConvertRate(sample_rate>>16, desired_rate,
&samples, num_samples, 1);
break;
case rate22khz:
/* Assuming 8-bit mono samples */
if ( desired_rate == 0 )
desired_rate = 22050;
num_samples =
ConvertRate(sample_rate>>16, desired_rate,
&samples, num_samples, 1);
break;
case rate44khz:
default:
if ( desired_rate == 0 ) {
desired_rate = (sample_rate>>16);
break;
}
num_samples =
ConvertRate(sample_rate>>16, desired_rate,
&samples, num_samples, 1);
break;
}
sample_rate = desired_rate;
/* Fill in the audio spec */
spec.freq = sample_rate;
spec.format = AUDIO_U8; /* The only format? */
spec.channels = snd_channels;
spec.samples = 4096;
spec.callback = NULL;
spec.userdata = NULL;
/* Save the audio data */
sound_datalen = num_samples*snd_channels;
if ( samples == data ) {
sound_data = new Uint8[sound_datalen];
memcpy(sound_data, samples, sound_datalen);
} else {
sound_data = samples;
}
}
Rewind();
return(0);
}
#define SLOW_CONVERT
#ifdef SLOW_CONVERT
/* This is relatively accurate, but not very fast */
Uint32
Wave:: ConvertRate(Uint16 rate_in, Uint16 rate_out,
Uint8 **samples, Uint32 n_samples, Uint8 s_size)
{
double ipos, i_size;
Uint32 opos;
Uint32 n_in, n_out;
Uint8 *input, *output;
n_in = n_samples*s_size;
input = *samples;
n_out = (Uint32)(((double)rate_out/rate_in)*n_samples)+1;
output = new Uint8[n_out*s_size];
i_size = ((double)rate_in/rate_out)*s_size;
#ifdef CONVERTRATE_DEBUG
printf("%g seconds of input\n", (double)n_samples/rate_in);
printf("Input rate: %hu, Output rate: %hu, Input increment: %g\n", rate_in, rate_out, i_size/s_size);
printf("%g seconds of output\n", (double)n_out/rate_out);
#endif
for ( ipos = 0, opos = 0; (Uint32)ipos < n_in; ) {
#ifdef CONVERTRATE_DEBUG
if ( opos >= n_out*s_size ) printf("Warning: buffer output overflow!\n");
#endif
memcpy(&output[opos], &input[(Uint32)ipos], s_size);
ipos += i_size;
opos += s_size;
}
*samples = output;
return(opos/s_size);
}
#else
#define CHECK_ERROR
/* This assumes that the rate in and the rate out are close to eachother,
i.e. only one sample needs to be inserted or deleted for a certain
number of skips. It's fast, but if inaccurate it can lead to output
distortion and buffer overrun.
*/
Uint32
Wave:: ConvertRate(Uint16 rate_in, Uint16 rate_out,
Uint8 **samples, Uint32 n_samples, Uint8 s_size)
{
Uint8 *s_in, *s_out;
Uint32 n_in, n_out; /* number of bytes in sample */
Uint32 ideal_out;
Uint32 p_in, p_out; /* byte position in sample */
Uint16 run, runs, i;
Uint8 free_sin;
Uint8 srate_in, srate_out;
Uint8 skip_in, stuff_out;
int cumulative_error;
#ifdef CONVERTRATE_DEBUG
printf("%g seconds of input\n", (double)n_samples/rate_in);
#endif
/* Initialize variables for input samples */
srate_in = rate_in>>8;
srate_out = rate_out>>8;
free_sin = 0;
s_in = *samples;
n_in = n_samples*s_size;
skip_in = srate_in/srate_out;
stuff_out = srate_out/srate_in;
#ifdef CONVERTRATE_DEBUG
printf("Rate in: 0x%X, Rate out: 0x%X, Rate in/out = %d, Rate out/in = %d\n",
rate_in>>8, rate_out>>8, skip_in, stuff_out);
#endif
/* Use simple integer rate conversion to get sample rates close */
if ( skip_in > 0 ) {
/* rate_in is approximately some multiple of rate_out */
n_out = n_in/skip_in;
s_out = new Uint8[n_out];
p_in = 0;
p_out = 0;
while ( p_in < n_in ) {
memcpy(&s_out[p_out], &s_in[p_in], s_size);
p_in += s_size*skip_in;
p_out += s_size*1;
}
free_sin = 1;
s_in = s_out;
n_in = n_out;
rate_in /= skip_in;
} else
if ( stuff_out > 0 ) {
/* rate_out is approximately some multiple of rate_in */
n_out = n_in*stuff_out;
s_out = new Uint8[n_out];
p_in = 0;
p_out = 0;
while ( p_in < n_in ) {
for ( run = 0; run < stuff_out; ++run ) {
memcpy(&s_out[p_out], &s_in[p_in], s_size);
p_out += s_size;
}
p_in += s_size;
}
free_sin = 1;
s_in = s_out;
n_in = n_out;
rate_in *= stuff_out;
}
/* The algorithm:
Since rate_in is close to rate_out, we can go 'run' samples
before having to insert or delete a sample. We always insert
or delete a full sample, doing no floating point carry over
for the next run. If rate_in is relatively close to rate_out,
the error is negligible. The above rate change code works
to shift standard Macintosh frequencies close to standard PC
frequencies for no error with relatively short samples.
*/
if ( rate_in > rate_out ) {
run = (rate_out/(rate_in-rate_out))*s_size;
ideal_out = (Uint32)(((double)rate_out/rate_in)*n_in)*s_size;
runs = ideal_out/run;
n_out = (Uint32)run*runs+(n_in-(Uint32)(run+s_size)*runs);
s_out = new Uint8[n_out];
p_in = 0;
p_out = 0;
#ifdef CHECK_ERROR
printf("Ideal output: %lu bytes\n", ideal_out);
cumulative_error = n_out - ideal_out;
if ( cumulative_error != 0 ) {
printf(
"WARNING: error in converting samples from rate %lu to %lu: %d bytes\n",
rate_in, rate_out, cumulative_error);
}
#endif /* CHECK_ERROR */
for ( i=0; i<runs; ++i ) {
memcpy(&s_out[p_out], &s_in[p_in], run);
p_in += run;
p_out += run;
p_in += s_size;
}
run = n_in-p_in;
memcpy(&s_out[p_out], &s_in[p_in], run);
p_out += run;
#ifdef CONVERTRATE_DEBUG
printf("rate_in = %hu, rate_out = %hu, n_in = %lu, n_out = %lu, p_out = %lu\n",
rate_in, rate_out, n_in, n_out, p_out);
#endif
if ( free_sin )
delete[] s_in;
*samples = s_out;
} else
if ( rate_out > rate_in ) {
run = (rate_in/(rate_out-rate_in))*s_size;
ideal_out = (Uint32)(((double)rate_in/rate_out)*n_in)*s_size;
runs = ideal_out/run;
n_out = (Uint32)runs*(run+s_size)+(n_in-(Uint32)runs*run);
s_out = new Uint8[n_out];
p_in = 0;
p_out = 0;
#ifdef CHECK_ERROR
printf("Ideal output: %lu bytes\n", ideal_out);
cumulative_error = n_out - ideal_out;
if ( cumulative_error != 0 ) {
printf(
"WARNING: error in converting samples from rate %lu to %lu: %d bytes\n",
rate_in, rate_out, cumulative_error);
}
#endif /* CHECK_ERROR */
for ( i=0; i<runs; ++i ) {
memcpy(&s_out[p_out], &s_in[p_in], run);
p_in += run;
p_out += run;
memcpy(&s_out[p_out], &s_in[p_in], s_size);
p_out += s_size;
}
run = n_in-p_in;
memcpy(&s_out[p_out], &s_in[p_in], run);
p_out += run;
#ifdef CONVERTRATE_DEBUG
printf("rate_in = %hu, rate_out = %hu, n_in = %lu, n_out = %lu, p_out = %lu\n",
rate_in, rate_out, n_in, n_out, p_out);
#endif
if ( free_sin )
delete[] s_in;
*samples = s_out;
} else {
p_out = n_in;
*samples = s_in;
}
#ifdef CONVERTRATE_DEBUG
printf("%g seconds of output\n", (double)(p_out/s_size)/rate_out);
#endif
return(p_out/s_size);
}
#endif
int
Wave:: Save(const char *wavefile)
{
/* Normally, these chunks come consecutively in a WAVE file */
SDL_RWops *dst;
Uint32 wavelen;
struct WaveFMT {
Uint32 FMTchunk;
Uint32 fmtlen;
Uint16 encoding;
Uint16 channels; /* 1 = mono, 2 = stereo */
Uint32 frequency; /* One of 11025, 22050, or 44100 Hz */
Uint32 byterate; /* Average bytes per second */
Uint16 samplesize; /* Bytes per sample block */
Uint16 bitspersample; /* One of 8, 12, 16 */
} format;
/* Open the WAV file for writing */
dst = SDL_RWFromFile(wavefile, "wb");
if ( dst == NULL ) {
error("Couldn't open %s for writing", wavefile);
return(-1);
}
/* Convert all the information about the sound chunk to WAVE format */
memcpy(&format.FMTchunk, "fmt ", 4);
format.fmtlen = sizeof(format)-2*sizeof(Uint32);
format.encoding = 1;
format.channels = spec.channels;
format.frequency = spec.freq;
format.byterate = format.frequency*format.channels;
format.samplesize = ((spec.format&0xFF)/8)*spec.channels;
format.bitspersample = (spec.format&0xFF);
/* Swap the WAVE format information to little-endian format */
format.fmtlen = SDL_SwapLE32(format.fmtlen);
format.encoding = SDL_SwapLE16(format.encoding);
format.channels = SDL_SwapLE16(format.channels);
format.frequency = SDL_SwapLE32(format.frequency);
format.byterate = SDL_SwapLE32(format.byterate);
format.samplesize = SDL_SwapLE16(format.samplesize);
format.bitspersample = SDL_SwapLE16(format.bitspersample);
/* Figure out how big the RIFF chunk will be */
wavelen = sizeof(Uint32)+sizeof(format)+2*sizeof(Uint32)+sound_datalen;
/* Save the WAVE */
if ( ! SDL_RWwrite(dst, "RIFF", sizeof(Uint32), 1) ||
! SDL_WriteLE32(dst, wavelen) ||
! SDL_RWwrite(dst, "WAVE", sizeof(Uint32), 1) ||
! SDL_RWwrite(dst, &format, sizeof(format), 1) ||
! SDL_RWwrite(dst, "data", sizeof(Uint32), 1) ||
! SDL_WriteLE32(dst, sound_datalen) ||
! SDL_RWwrite(dst, sound_data, sound_datalen, 1) ||
(SDL_RWclose(dst) != 0) ) {
error("Couldn't write to %s", wavefile);
SDL_RWclose(dst);
return(-1);
}
return(0);
}
|