File: control

package info (click to toggle)
mafft 7.475-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,792 kB
  • sloc: ansic: 94,529; sh: 2,522; ruby: 1,044; perl: 668; makefile: 478
file content (42 lines) | stat: -rw-r--r-- 1,726 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Source: mafft
Maintainer: Debian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
Uploaders: Charles Plessy <plessy@debian.org>,
           Andreas Tille <tille@debian.org>
Section: science
Priority: optional
Build-Depends: debhelper-compat (= 13)
Standards-Version: 4.5.1
Vcs-Browser: https://salsa.debian.org/med-team/mafft
Vcs-Git: https://salsa.debian.org/med-team/mafft.git
Homepage: https://mafft.cbrc.jp/alignment/software/
Rules-Requires-Root: no

Package: mafft
Architecture: any
Depends: ${shlibs:Depends},
         ${misc:Depends},
         ${perl:Depends}
Recommends: blast2,
            libwww-perl,
            lynx,
            ruby
Enhances: t-coffee
Description: Multiple alignment program for amino acid or nucleotide sequences
 MAFFT is a multiple sequence alignment program which offers three
 accuracy-oriented methods:
  * L-INS-i (probably most accurate; recommended for <200 sequences;
    iterative refinement method incorporating local pairwise alignment
    information),
  * G-INS-i (suitable for sequences of similar lengths; recommended for
    <200 sequences; iterative refinement method incorporating global
    pairwise alignment information),
  * E-INS-i (suitable for sequences containing large unalignable regions;
    recommended for <200 sequences),
 and five speed-oriented methods:
  * FFT-NS-i (iterative refinement method; two cycles only),
  * FFT-NS-i (iterative refinement method; max. 1000 iterations),
  * FFT-NS-2 (fast; progressive method),
  * FFT-NS-1 (very fast; recommended for >2000 sequences; progressive
    method with a rough guide tree),
  * NW-NS-PartTree-1 (recommended for ∼50,000 sequences; progressive
    method with the PartTree algorithm).