1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
"""# Waveforms example
Simple waveform generator widget, with plotting.
"""
from dataclasses import dataclass, field
from enum import Enum
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_qt5agg import FigureCanvas
from scipy import signal
from typing_extensions import Annotated
from magicgui import magicgui, register_type, widgets
register_type(float, widget_type="FloatSlider")
register_type(int, widget_type="Slider")
Freq = Annotated[float, {"min": 0.001, "max": 30.0}]
Phase = Annotated[float, {"min": 0.0, "max": 360.0}]
Duty = Annotated[float, {"min": 0.0, "max": 1.0}]
Time = Annotated[float, {"min": 0.01, "max": 100.0}]
@dataclass
class Signal:
"""Constructs a 1D signal.
As is, this class is not very useful, but one could add callbacks
or more functionality here
Parameters
----------
func : callable
func must take a 'time' array as sole argument and return a 1D array with the
same size as the input
duration : float
the maximum of the input time array
size : int
the number of samples in the time array
"""
func: callable
duration: Time = 1.0
size: int = 500
time: np.ndarray = field(init=False)
data: np.ndarray = field(init=False)
def __post_init__(self):
"""Evaluate the function at instantiation time."""
self.time = np.linspace(0, self.duration, self.size)
self.data = self.func(self.time)
def plot(self, ax=None, **kwargs):
"""Plots the data.
Parameters
----------
ax: matplotlib.axes.Axes instance, default None
if provided the plot is done on this axes instance.
If None a new ax is created
**kwargs: Keyword arguments that are passed on to
the matplotib ax.plot method
Returns
-------
fig: a matplotlib.figure.Figure instance
ax: matplotlib.axes.Axes instance
"""
if ax is None:
fig, ax = plt.subplots()
else:
fig = ax.get_figure()
ax.plot(self.time, self.data, **kwargs)
return fig, ax
def sine(
duration: Time = 10.0, size: int = 500, freq: Freq = 0.5, phase: Phase = 0.0
) -> Signal:
"""Returns a 1D sine wave.
Parameters
----------
duration: float
the duration of the signal in seconds
size: int
the number of samples in the signal time array
freq: float
the frequency of the signal in Hz
phase: Phase
the phase of the signal (in degrees)
"""
sig = Signal(
duration=duration,
size=size,
func=lambda t: np.sin(t * (2 * np.pi * freq) + phase * np.pi / 180),
)
return sig
def chirp(
duration: Time = 10.0,
size: int = 500,
f0: float = 1.0,
t1: Time = 5.0,
f1: float = 2.0,
phase: Phase = 0.0,
) -> Signal:
"""Frequency-swept cosine generator.
See scipy.signal.chirp
"""
sig = Signal(
duration=duration,
size=size,
func=partial(signal.chirp, f0=f0, t1=t1, f1=f1, phi=phase),
)
return sig
def sawtooth(
duration: Time = 10.0,
size: int = 500,
freq: Freq = 1.0,
width: Duty = 1.0,
phase: Phase = 0.0,
) -> Signal:
"""Return a periodic sawtooth or triangle waveform.
See scipy.signal.sawtooth
"""
sig = Signal(
duration=duration,
size=size,
func=lambda t: signal.sawtooth(
2 * np.pi * freq * t + phase * np.pi / 180, width=width
),
)
return sig
def square(
duration: Time = 10.0, size: int = 500, freq: Freq = 1.0, duty: Duty = 0.5
) -> Signal:
"""Return a periodic sawtooth or triangle waveform.
See scipy.signal.square
"""
sig = Signal(
duration=duration,
size=size,
func=lambda t: signal.square(2 * np.pi * freq * t, duty=duty),
)
return sig
def on_off(
duration: Time = 10.0, size: int = 500, t_on: Time = 0.01, t_off: Time = 0.01
) -> Signal:
"""On/Off signal function."""
data = np.ones(size)
data[: int(size * t_on / duration)] = -1
if t_off > 0:
data[int(size * t_off / duration) :] = -1
sig = Signal(duration=duration, size=size, func=lambda t: data)
return sig
WAVEFORMS = {
"sine": sine,
"chirp": chirp,
"sawtooth": sawtooth,
"square": square,
"on_off": on_off,
}
class Select(Enum):
"""Enumeration to select signal type."""
OnOff = "on_off"
Sine = "sine"
Chirp = "chirp"
Sawtooth = "sawtooth"
Square = "square"
class WaveForm(widgets.Container):
"""Simple waveform generator widget, with plotting."""
def __init__(self):
"""Creates the widget."""
super().__init__()
self.fig, self.ax = plt.subplots()
self.native.layout().addWidget(FigureCanvas(self.fig))
self.waveform = sine
self.controls = None
self.append(self.signal_widget)
self.update_controls()
self.update_graph(sine())
@magicgui(auto_call=True)
def signal_widget(self, select: Select = Select.Sine) -> widgets.Container:
"""Waveform selection, from the WAVEFORMS dict."""
self.waveform = WAVEFORMS[select.value]
self.update_controls()
self.update_graph(self.waveform())
def update_controls(self):
"""Reset controls according to the new function."""
if self.controls is not None:
self.remove(self.controls)
self.controls = magicgui(auto_call=True)(self.waveform)
self.append(self.controls)
self.controls.called.connect(self.update_graph)
def update_graph(self, sig: Signal):
"""Re-plot when a parameter changes.
Note
----
For big data, this could be slow, maybe `auto_call` should
not be true in the method above...
"""
self.ax.cla()
sig.plot(ax=self.ax)
self.fig.canvas.draw()
waveform = WaveForm()
waveform.show(run=True)
|