1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
// This is a simple standalone example. See README.txt
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "magma_v2.h"
#include "magmasparse.h"
// ------------------------------------------------------------
// This is an example how magma can be integrated into another software.
int main( int argc, char** argv )
{
// The software does e.g. discretization of a PDE,
// ends up with a sparse linear system in CSR format and a RHS.
// Let's assume this system is a diagonal system of size m.
int i, m=200, n=1;
int *col, *row;
double *val, *rhs, *sol;
row = (int*) calloc(m+1, sizeof(int));
col = (int*) calloc(m, sizeof(int));
val = (double*) calloc(m, sizeof(double));
rhs = (double*) calloc(m, sizeof(double));
sol = (double*) calloc(m, sizeof(double));
for (i = 0; i < m; ++i) {
col[i] = i;
row[i] = i;
val[i] = 55.0;
rhs[i] = 3.0;
sol[i] = 0.0;
}
row[m] = m;
// Initialize MAGMA and create some LA structures.
magma_init();
magma_dopts opts;
magma_queue_t queue;
magma_queue_create( 0, &queue );
memset(&opts, 0, sizeof(magma_dopts));
magma_d_matrix A={Magma_CSR}, dA={Magma_CSR};
magma_d_matrix b={Magma_CSR}, db={Magma_CSR};
magma_d_matrix x={Magma_CSR}, dx={Magma_CSR};
// Pass the system to MAGMA.
magma_dcsrset( m, m, row, col, val, &A, queue );
magma_dvset( m, 1, rhs, &b, queue );
// Choose a solver, preconditioner, etc. - see documentation for options.
opts.solver_par.solver = Magma_PIDRMERGE;
opts.solver_par.restart = 8;
opts.solver_par.maxiter = 1000;
opts.solver_par.rtol = 1e-10;
opts.solver_par.maxiter = 1000;
opts.precond_par.solver = Magma_ILU;
opts.precond_par.levels = 0;
opts.precond_par.trisolver = Magma_CUSOLVE;
// Initialize the solver.
magma_dsolverinfo_init( &opts.solver_par, &opts.precond_par, queue );
// Copy the system to the device
magma_dmtransfer( A, &dA, Magma_CPU, Magma_DEV, queue );
magma_dmtransfer( b, &db, Magma_CPU, Magma_DEV, queue );
// initialize an initial guess for the iteration vector
magma_dvinit( &dx, Magma_DEV, b.num_rows, b.num_cols, 0.0, queue );
// Generate the preconditioner.
magma_d_precondsetup( dA, db, &opts.solver_par, &opts.precond_par, queue );
// In case we only wanted to generate a preconditioner, we are done.
// The preconditioner in the opts.precond_par structure - in this case an ILU.
// The lower ILU(0) factor is in opts.precond_par.L and
// the upper ILU(0) factor is in opts.precond_par.U (in this case on the device).
// If we want to solve the problem, run:
magma_d_solver( dA, db, &dx, &opts, queue );
// Then copy the solution back to the host...
magma_dmtransfer( dx, &x, Magma_DEV, Magma_CPU, queue );
// and back to the application code
magma_dvcopy( x, &m, &n, sol, queue );
// Free the allocated memory...
magma_dmfree( &dx, queue );
magma_dmfree( &db, queue );
magma_dmfree( &dA, queue );
magma_dmfree( &b, queue ); // won't do anything as MAGMA does not own the data.
magma_dmfree( &A, queue ); // won't do anything as MAGMA does not own the data.
// and finalize MAGMA.
magma_queue_destroy( queue );
magma_finalize();
// From here on, the application code may continue with the solution in sol...
for (i = 0; i < 20; ++i) {
printf("%.4f\n", sol[i]);
}
free(val);
free(col);
free(row);
free(sol);
free(rhs);
return 0;
}
|