1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
*> \brief \b CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLANGT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangt.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangt.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangt.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* REAL FUNCTION CLANGT( NORM, N, DL, D, DU )
*
* .. Scalar Arguments ..
* CHARACTER NORM
* INTEGER N
* ..
* .. Array Arguments ..
* COMPLEX D( * ), DL( * ), DU( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLANGT returns the value of the one norm, or the Frobenius norm, or
*> the infinity norm, or the element of largest absolute value of a
*> complex tridiagonal matrix A.
*> \endverbatim
*>
*> \return CLANGT
*> \verbatim
*>
*> CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*> (
*> ( norm1(A), NORM = '1', 'O' or 'o'
*> (
*> ( normI(A), NORM = 'I' or 'i'
*> (
*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*>
*> where norm1 denotes the one norm of a matrix (maximum column sum),
*> normI denotes the infinity norm of a matrix (maximum row sum) and
*> normF denotes the Frobenius norm of a matrix (square root of sum of
*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NORM
*> \verbatim
*> NORM is CHARACTER*1
*> Specifies the value to be returned in CLANGT as described
*> above.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0. When N = 0, CLANGT is
*> set to zero.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX array, dimension (N-1)
*> The (n-1) sub-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX array, dimension (N)
*> The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*> DU is COMPLEX array, dimension (N-1)
*> The (n-1) super-diagonal elements of A.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
REAL FUNCTION CLANGT( NORM, N, DL, D, DU )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER N
* ..
* .. Array Arguments ..
COMPLEX D( * ), DL( * ), DU( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL ANORM, SCALE, SUM, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME, SISNAN
EXTERNAL LSAME, SISNAN
* ..
* .. External Subroutines ..
EXTERNAL CLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
ANORM = ZERO
IF( N.LE.0 ) THEN
ANORM = ZERO
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
ANORM = ABS( D( N ) )
DO 10 I = 1, N - 1
IF( ANORM.LT.ABS( DL( I ) ) .OR. SISNAN( ABS( DL( I ) ) ) )
$ ANORM = ABS(DL(I))
IF( ANORM.LT.ABS( D( I ) ) .OR. SISNAN( ABS( D( I ) ) ) )
$ ANORM = ABS(D(I))
IF( ANORM.LT.ABS( DU( I ) ) .OR. SISNAN (ABS( DU( I ) ) ) )
$ ANORM = ABS(DU(I))
10 CONTINUE
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
* Find norm1(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
DO 20 I = 2, N - 1
TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
20 CONTINUE
END IF
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI(A).
*
IF( N.EQ.1 ) THEN
ANORM = ABS( D( 1 ) )
ELSE
ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
DO 30 I = 2, N - 1
TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
30 CONTINUE
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
SCALE = ZERO
SUM = ONE
CALL CLASSQ( N, D, 1, SCALE, SUM )
IF( N.GT.1 ) THEN
CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
END IF
ANORM = SCALE*SQRT( SUM )
END IF
*
CLANGT = ANORM
RETURN
*
* End of CLANGT
*
END
|