1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
/**
------------------------------------------------------------
@defgroup magma_init Initialize/finalize
@defgroup group_util Utilities
@{
@defgroup magma_malloc Allocate GPU device memory
@defgroup magma_malloc_cpu Allocate CPU host memory
@defgroup magma_malloc_pinned Allocate pinned CPU host memory
@defgroup group_comm Communication CPU <=> GPU
@{
@defgroup magma_copyvector copyvector: GPU => GPU
@defgroup magma_getvector getvector: GPU => CPU
@defgroup magma_setvector setvector: CPU => GPU
@defgroup magma_copymatrix copymatrix: GPU => GPU
@defgroup magma_getmatrix getmatrix: GPU => CPU
@defgroup magma_setmatrix setmatrix: CPU => GPU
@defgroup magma_getmatrix_transpose getmatrix_transpose: GPU => CPU
@defgroup magma_setmatrix_transpose setmatrix_transpose: CPU => GPU
@defgroup magma_getmatrix_bcyclic getmatrix_bcyclic: multi-GPU => CPU
@defgroup magma_setmatrix_bcyclic setmatrix_bcyclic: CPU => multi-GPU
@}
@defgroup group_constants Constants and converters
@brief Mappings between LAPACK, MAGMA, CBLAS, cuBLAS, and clBLAS constants
@{
@defgroup magma_const Map LAPACK => MAGMA
@defgroup lapack_const Map MAGMA => LAPACK
@defgroup cblas_const Map CBLAS => MAGMA
@defgroup clblas_const Map clBLAS => MAGMA
@defgroup cublas_const Map cuBLAS => MAGMA
@}
@defgroup magma_device Device management
@defgroup magma_queue Queue management
@defgroup magma_event Event management
@defgroup magma_error Error handling
@{
@defgroup magma_error_codes MAGMA error codes
@}
@defgroup magma_util Miscellaneous utilities
@{
@defgroup magma_make_lwork make_lwork: Round lwork for float
@}
@defgroup magma_print Print matrix
@defgroup magma_wtime Timer
@defgroup magma_tuning Tuning (get_nb, etc.)
@}
============================================================
@defgroup dense Dense LA
@brief Designed to operate on large, dense matrices.
@{
------------------------------------------------------------
@defgroup group_solvers Linear system solvers
@brief Solves $Ax = b$
@{
@defgroup group_gesv General matrices: LU
@brief Solves $Ax = b$ using LU factorization for general matrices
@{
@defgroup magma_gesv gesv: Solves Ax = b using LU factorization (driver)
@defgroup magma_getrf getrf: LU factorization
@defgroup magma_getrs getrs: LU forward and back solves
@defgroup magma_getri getri: LU inverse
@defgroup group_gesv_aux Auxiliary routines
@{
@defgroup magma_getf2 getf2: LU panel factorization
@defgroup magma_laswp laswp: Swap rows
@}
@defgroup group_gesv_nopiv No pivoting variant
@{
@defgroup magma_gesv_nopiv gesv: Solves Ax = b using LU factorization - no pivoting (driver)
@defgroup magma_getf2_nopiv getf2: LU panel factorization - no pivoting
@defgroup magma_getrf_nopiv getrf: LU factorization - no pivoting
@defgroup magma_getrs_nopiv getrs: LU forward and back solves - no pivoting
@defgroup magma_gerfs_nopiv gerfs: Refine solution - no pivoting
@}
@}
@defgroup group_gesv_rbt General matrices: RBT + no pivoting LU
@brief Solves $Ax = b$ using RBT + no pivoting LU factorization for general matrices
@{
@defgroup magma_gesv_rbt gesv_rbt: Solves Ax = b using RBT + LU factorization (driver)
@defgroup magma_gerbt gerbt: Apply random butterfly transformation (RBT)
@defgroup group_gesv_rbt_aux Auxiliary routines
@{
@defgroup magma_prbt prbt
@defgroup magma_prbt_mv prbt_mv
@defgroup magma_prbt_mtv prbt_mtv
@}
@}
@defgroup group_gels General matrices: least squares
@brief Solves $Ax \approx b$ where $A$ is rectangular
@see group_orthogonal
@{
@defgroup magma_gels gels: Least squares solves Ax = b using QR factorization (driver)
@defgroup magma_gglse gglse: Least squares solves Ax = b subject to Bx = d (driver)
@defgroup magma_geqrsv geqrsv: Solves Ax = b using QR factorization (driver)
@}
@defgroup group_posv Symmetric/Hermitian positive definite: Cholesky
@brief Solves $Ax = b$ using Cholesky factorization for SPD/HPD matrices
@{
@defgroup magma_posv posv: Solves Ax = b using Cholesky factorization (driver)
@defgroup magma_potrf potrf: Cholesky factorization
@defgroup magma_potrs potrs: Cholesky forward and back solves
@defgroup magma_potri potri: Cholesky inverse
@defgroup group_posv_aux Auxiliary routines
@{
@defgroup magma_potf2 potf2: Cholesky panel factorization
@defgroup magma_lauum lauum: Multiply triangular matrices; used in potri
@}
@}
@defgroup group_hesv Symmetric/Hermitian indefinite
@brief Solves $Ax = b$ using indefinite factorization for Hermitian matrices
@{
@defgroup magma_hesv sy/hesv: Solves Ax = b using symmetric/Hermitian indefinite factorization (driver)
@defgroup magma_hetrf sy/hetrf: symmetric/Hermitian indefinite factorization (Bunch-Kaufman pivoting)
@defgroup magma_hetrf_aasen sy/hetrf: symmetric/Hermitian indefinite factorization (Aasen)
@defgroup group_hesv_aux Auxiliary routines
@{
@defgroup magma_lahef lahef: Partial factorization; used by hetrf
@defgroup magma_laswp_sym laswp_sym: Swap rows/cols
@}
@defgroup group_hesv_nopiv No pivoting variant
@{
@defgroup magma_hesv_nopiv sy/hesv: Solves Ax = b using symmetric/Hermitian indefinite factorization - no pivoting (driver)
@defgroup magma_hetrf_nopiv sy/hetrf: symmetric/Hermitian indefinite factorization - no pivoting
@defgroup magma_hetrs_nopiv sy/hetrs: symmetric/Hermitian indefinite forward and back solves - no pivoting
@}
@}
@defgroup group_sysv Symmetric indefinite
@brief Solves $Ax = b$ using indefinite factorization for symmetric matrices
@{
@defgroup group_sysv_nopiv No pivoting variant
@{
@defgroup magma_sysv_nopiv sysv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver)
@defgroup magma_sytrf_nopiv sytrf: Symmetric indefinite factorization - no pivoting
@defgroup magma_sytrs_nopiv sytrs: Symmetric indefinite forward and back solves - no pivoting
@}
@}
@}
------------------------------------------------------------
@defgroup group_orthogonal Orthogonal/unitary factorizations
@brief Factor $A$ using $QR, RQ, QL, LQ$
@{
@defgroup group_qr QR factorization
@brief Factor $A = QR$
@{
@defgroup magma_geqrf geqrf: QR factorization
@defgroup magma_geqp3 geqp3: QR factorization with column pivoting
@defgroup magma_gegqr gegqr: QR factorization and generate Q
@defgroup magma_unmqr or/unmqr: Multiply by Q from QR factorization
@defgroup magma_ungqr or/ungqr: Generate Q from QR factorization
@defgroup magma_geqrs geqrs:
@defgroup group_qr_aux Auxiliary routines
@{
@defgroup magma_geqr2 geqr2: QR panel factorization
@defgroup magma_laqps laqps: Partial factorization; used by geqp3
@defgroup magma_nrm2_adjust nrm2_adjust: auxiliary for geqp3
@defgroup magma_nrm2_check nrm2_check: auxiliary for geqp3
@defgroup magma_nrm2_cols nrm2_cols: auxiliary for geqp3
@defgroup magma_nrm2_row_check_adjust nrm2_row_check_adjust: auxiliary for geqp3
@}
@}
@defgroup group_rq RQ factorization
@brief Factor $A = RQ$
@{
@defgroup magma_gerqf gerqf: RQ factorization
@defgroup magma_ggrqf ggrqf: generalized RQ factorization of an M-by-N matrix A and a P-by-N matrix B
@defgroup magma_unmrq or/unmrq: Multiply by Q from RQ factorization
@defgroup magma_ungrq or/ungrq: Generate Q from RQ factorization
@}
@defgroup group_ql QL factorization
@brief Factor $A = QL$
@{
@defgroup magma_geqlf geqlf: QL factorization
@defgroup magma_unmql or/unmql: Multiply by Q from QL factorization
@defgroup magma_ungql or/ungql: Generate Q from QL factorization
@}
@defgroup group_lq LQ factorization
@brief Factor $A = LQ$
@{
@defgroup magma_gelqf gelqf: LQ factorization
@defgroup magma_unmlq or/unmlq: Multiply by Q from LQ factorization
@defgroup magma_unglq or/unglq: Generate Q from LQ factorization
@}
@}
------------------------------------------------------------
@defgroup group_eigenvalue Eigenvalues
@brief Solves $Ax = \lambda x$
@{
@defgroup group_geev Non-symmetric eigenvalues
@brief Solves $Ax = \lambda x$ where $A$ is general
@{
@defgroup magma_geev geev: Non-symmetric eigenvalues (driver)
@defgroup magma_gehrd gehrd: Hessenberg reduction
@defgroup magma_unghr or/unghr: Generate Q from Hessenberg reduction
@defgroup group_geev_aux Auxiliary routines
@{
@defgroup magma_lahr2 lahr2: Partial factorization; used by gehrd
@defgroup magma_lahru lahru: Partial factorization; used by gehrd
@defgroup magma_trevc trevc: Compute eigenvectors; used by geev
@defgroup magma_latrsd latrsd: Triangular solve with modified diagonal; used by trevc
@defgroup magma_laqtrsd laqtrsd: Quasi-Triangular solve with modified diagonal; used by trevc
@defgroup magma_laln2 laln2: Solve 2x2 system; used by trevc
@}
@}
@defgroup group_heev Symmetric/Hermitian eigenvalues
@brief Solves $Ax = \lambda x$ where $A$ is symmetric/Hermitian
@{
@defgroup magma_heevx sy/heevx: Solves using QR iteration (expert)
@defgroup magma_heevd sy/heevd: Solves using divide-and-conquer (driver)
@defgroup magma_heevdx sy/heevdx: Solves using divide-and-conquer (expert)
@defgroup magma_heevr sy/heevr: Solves using MRRR (driver)
@defgroup magma_hetrd sy/hetrd: Tridiagonal reduction
@defgroup magma_unmtr or/unmtr: Multiply by Q from tridiagonal reduction
@defgroup magma_ungtr or/ungtr: Generate Q from tridiagonal reduction
@defgroup group_heev_aux Auxiliary routines
@{
@defgroup magma_latrd latrd: Partial factorization; used by hetrd
@defgroup magma_stedx stedx: Eigenvalues & vectors of tridiagonal using D&C
@defgroup magma_laex0 laex0: Eigenvalues & vectors of tridiagonal using D&C
@defgroup magma_laex1 laex1: Updated eigensystem after rank-1 update.
@defgroup magma_laex3 laex3: Roots of secular equation.
@}
@defgroup group_heev_2stage 2-stage variant
@{
@defgroup magma_hetrd_he2hb he2hb: 1st stage, full to band
@defgroup magma_hetrd_sy2sb sy2sb: 1st stage, full to band
@defgroup magma_hetrd_hb2st hb2st: 2nd stage, band to tridiagonal
@defgroup magma_hetrd_sb2st sb2st: 2nd stage, band to tridiagonal
@defgroup magma_hbtype1cb hbtype1cb
@defgroup magma_hbtype2cb hbtype2cb
@defgroup magma_hbtype3cb hbtype3cb
@}
@}
@defgroup group_hegv Generalized Symmetric/Hermitian eigenvalues
@brief Solves $Ax = \lambda B x$,
$ABx = \lambda x$, or
$BAx = \lambda x$
where $A, B$ are symmetric/Hermitian
and $B$ is positive definite.
@{
@defgroup magma_hegvx sy/hegvx: Solves using QR iteration (expert)
@defgroup magma_hegvd sy/hegvd: Solves using divide-and-conquer (driver)
@defgroup magma_hegvdx sy/hegvdx: Solves using divide-and-conquer (expert)
@defgroup magma_hegvr sy/hegvr: Solves using MRRR (driver)
@defgroup group_hegv_aux Auxiliary routines
@{
@defgroup magma_hegst hegst: Reduce generalized problem to standard problem.
@}
@}
@}
------------------------------------------------------------
@defgroup group_svd Singular Value Decomposition (SVD)
@brief Factor $A = U \Sigma V^T$
@{
@defgroup magma_gesvd gesvd: SVD using QR iteration
@defgroup magma_gesdd gesdd: SVD using divide-and-conquer
@defgroup magma_gebrd gebrd: Bidiagonal reduction
@defgroup magma_unmbr or/unmbr: Multiply by Q or P from bidiagonal reduction
@defgroup magma_ungbr or/ungbr: Generate Q or P from bidiagonal reduction
@defgroup group_gesvd_aux Auxiliary routines
@{
@defgroup magma_labrd labrd: Partial factorization; used by gebrd
@}
@}
------------------------------------------------------------
@defgroup group_blas MAGMA BLAS and Auxiliary
@brief BLAS and Auxiliary functions.
MAGMA BLAS functions that fit better in above categories
(solvers, etc.) are listed there.
Standard BLAS and LAPACK auxiliary routines are grouped by
amount of work into Level 1, 2, 3.
@{
@defgroup group_math Math functions (sqrt, etc.), O(1) work
@{
@defgroup magma_ceildiv ceil(x/y) and ceil(x/y)*y
@defgroup magma_sqrt sqrt
@defgroup magma_nan_inf NAN and INF checks
@defgroup magma_complex complex number support
@}
@defgroup group_blas1 Level 1: vectors operations, O(n) work
@brief Vector operations that perform $O(n)$ work on $O(n)$ data.
These are memory bound, since every operation requires a memory read or write.
@{
@defgroup magma_asum asum: Sum vector
@brief $\sum_i |x_i|$
@defgroup magma_axpy axpy: Add vectors
@brief $y = \alpha x + y$
@defgroup magma_copy copy: Copy vector
@brief $y = x$
@defgroup magma__dot dot: Dot (inner) product
@brief $x^T y$
or $x^H y$
@defgroup magma_iamax iamax: Find max element
@brief $\text{argmax}_i\; |x_i|$
@defgroup magma_iamin iamin: Find min element
@brief $\text{argmin}_i\; |x_i|$
@defgroup magma_nrm2 nrm2: Vector 2 norm
@brief $||x||_2$
@defgroup magma_rot rot: Apply Givens rotation
@defgroup magma_rotg rotg: Generate Givens rotation
@defgroup magma_rotm rotm: Apply modified Givens rotation
@defgroup magma_rotmg rotmg: Generate modified Givens rotation
@defgroup magma_scal scal: Scale vector
@brief $x = \alpha x$
@defgroup magma_swap swap: Swap vectors
@brief $x <=> y$
@}
@defgroup group_blas2 Level 2: matrix-vector operations, O(n^2) work
@brief Matrix operations that perform $O(n^2)$ work on $O(n^2)$ data.
These are memory bound, since every operation requires a memory read or write.
@{
@defgroup magma_geadd geadd: Add matrices
@brief $B = \alpha A + \beta B$
@defgroup magma_gemv gemv: General matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_ger ger: General matrix rank 1 update
@brief $A = \alpha xy^T + A$
@defgroup magma_hemv hemv: Hermitian matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_her her: Hermitian rank 1 update
@brief $A = \alpha xx^T + A$
@defgroup magma_her2 her2: Hermitian rank 2 update
@brief $A = \alpha xy^T + \alpha yx^T + A$
@defgroup magma_symv symv: Symmetric matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_syr syr: Symmetric rank 1 update
@brief $A = \alpha xx^T + A$
@defgroup magma_syr2 syr2: Symmetric rank 2 update
@brief $A = \alpha xy^T + \alpha yx^T + A$
@defgroup magma_trmv trmv: Triangular matrix-vector multiply
@brief $x = Ax$
@defgroup magma_trsv trsv: Triangular matrix-vector solve
@brief $x = op(A^{-1})\; b$
----
@defgroup magma_swapblk swapblk: Swap several rows
@defgroup magma_swapdblk swapdblk: Swap diagonal blocks
@defgroup magma_symmetrize symmetrize: Symmetrize matrix
@brief $\text{upper}(A) = \text{lower}(A)^T$
or $\text{lower}(A) = \text{upper}(A)^T$
@defgroup magma_transpose transpose: Transpose matrix
@brief $B = A^T$
or $B = A^H$
@defgroup magma_lacgv lacgv: Conjugate vector
@brief $x = conj(x)$
@defgroup magma_lacpy lacpy: Copy matrix
@brief $B = A$
@defgroup magma_lascl lascl: Scale matrix by scalar
@brief $A = \alpha A$
@defgroup magma_lascl_diag lascl_diag: Scale matrix by diagonal
@brief $A = D A$
@defgroup magma_lascl_2x2 lascl_2x2: Scale matrix by 2-by-2 pivot
@brief $A = D A$
@defgroup magma_laset laset: Set matrix to constants
@brief $A_{ij} =$ diag if $i=j$;
$A_{ij} =$ offdiag otherwise.
@defgroup magma_laset_band laset_band: Set band of matrix to constants
@brief $A_{ij} =$ diag if $i=j$;
$A_{ij} =$ offdiag otherwise.
@}
@defgroup group_blas3 Level 3: matrix-matrix operations, O(n^3) work
@brief Matrix-matrix operations that perform $O(n^3)$ work on $O(n^2)$ data.
These benefit from cache reuse, since many operations can be
performed for every read from main memory.
@{
@defgroup magma_gemm gemm: General matrix multiply: C = AB + C
@brief $C = \alpha \;op(A) \;op(B) + \beta C$
@defgroup magma_hemm hemm: Hermitian matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is Hermitian
@defgroup magma_herk herk: Hermitian rank k update
@brief $C = \alpha A A^T + \beta C$ where $C$ is Hermitian
@defgroup magma_her2k her2k: Hermitian rank 2k update
@brief $C = \alpha A B^T + \alpha B A^T + \beta C$ where $C$ is Hermitian
@defgroup magma_symm symm: Symmetric matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is symmetric
@defgroup magma_syrk syrk: Symmetric rank k update
@brief $C = \alpha A A^T + \beta C$ where $C$ is symmetric
@defgroup magma_syr2k syr2k: Symmetric rank 2k update
@brief $C = \alpha A B^T + \alpha B A^T + \beta C$ where $C$ is symmetric
@defgroup magma_trmm trmm: Triangular matrix multiply
@brief $B = \alpha \;op(A)\; B$
or $B = \alpha B \;op(A) $ where $A$ is triangular
@defgroup magma_trsm trsm: Triangular solve matrix
@brief $C = op(A)^{-1} B $
or $C = B \;op(A)^{-1}$ where $A$ is triangular
@defgroup magma_trtri trtri: Triangular inverse; used in getri, potri
@brief $A = A^{-1}$ where $A$ is triangular
@defgroup magma_trtri_diag trtri_diag: Invert diagonal blocks of triangular matrix; used in trsm
@}
@defgroup group_larf Householder reflectors
@{
@defgroup magma_larfy larfy: Apply Householder reflector to symmetric/Hermitian matrix
@defgroup magma_larfg larfg: Generate Householder reflector
@defgroup magma_larfb larfb: Apply block of Householder reflectors (Level 3)
@}
@defgroup group_mixed Precision conversion
@{
@defgroup magma_lag2 _lag2_: Converts general matrix between single and double
@defgroup magma_lat2 _lat2_: Converts triangular matrix between single and double
@}
@defgroup group_norms Matrix norms
@{
@defgroup magma_lange lange: General matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@defgroup magma_lanhe lansy/he: Symmetric/Hermitian matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@}
@}
@}
============================================================
@defgroup batched Batched LA
@brief Batched functions operate on a large set of small matrices
in parallel, for instance, 10000 matrices of size 100 x 100.
@{
------------------------------------------------------------
@defgroup group_solvers_batched Linear system solvers
@brief Solves $Ax = b$.
@{
@defgroup group_gesv_batched General matrices: LU
@brief Solves $Ax = b$ using LU factorization for general matrices
@{
@defgroup magma_gesv_batched gesv: Solves Ax = b using LU factorization (driver)
@defgroup magma_getrf_batched getrf: LU factorization
@defgroup magma_getrs_batched getrs: LU forward and back solves
@defgroup magma_getri_batched getri: LU inverse
@defgroup magma_gerfs_batched gerfs: Refine solution
@defgroup magma_gesv_aux_batched Auxiliary routines
@{
@defgroup magma_getf2_batched getf2: LU panel factorization
@defgroup magma_laswp_batched laswp: Swap rows
@}
@defgroup group_gesv_nopiv_batched No pivoting variant
@{
@defgroup magma_gesv_nopiv_batched gesv: Solves Ax = b using LU factorization - no pivoting (driver)
@defgroup magma_getf2_nopiv_batched getf2: LU panel factorization - no pivoting
@defgroup magma_getrf_nopiv_batched getrf: LU factorization - no pivoting
@defgroup magma_getrs_nopiv_batched getrs: LU forward and back solves - no pivoting
@}
@}
@defgroup group_gesv_rbt_batched General matrices: RBT + no pivoting LU
@brief Solves $Ax = b$ using RBT + no pivoting LU factorization for general matrices
@{
@defgroup magma_gesv_rbt_batched gesv_rbt: Solves Ax = b using RBT + LU factorization (driver)
@defgroup magma_gesv_rbt_aux_batched Auxiliary routines
@{
@defgroup magma_gerbt_batched gerbt: Apply random butterfly transformation (RBT)
@defgroup magma_prbt_batched prbt
@defgroup magma_prbt_mv_batched prbt_mv
@defgroup magma_prbt_mtv_batched prbt_mtv
@}
@}
@defgroup group_gels_batched General matrices: least squares
@brief Solves $Ax \approx b$ where $A$ is rectangular
@see group_orthogonal
@{
@defgroup magma_gels_batched gels: Least squares solves Ax = b using QR factorization (driver)
@}
@defgroup group_posv_batched Symmetric/Hermitian positive definite: Cholesky
@brief Solves $Ax = b$ using Cholesky factorization for SPD/HPD matrices
@{
@defgroup magma_posv_batched posv: Solves Ax = b using Cholesky factorization (driver)
@defgroup magma_potrf_batched potrf: Cholesky factorization
@defgroup magma_potrs_batched potrs: Cholesky forward and back solves
@defgroup magma_potri_batched potri: Cholesky inverse
@defgroup magma_porfs_batched porfs: Refine solution
@defgroup magma_posv_aux_batched Auxiliary routines
@{
@defgroup magma_potf2_batched potf2: Cholesky panel factorization
@defgroup magma_lauum_batched lauum: Multiply triangular matrices; used in potri
@}
@}
@defgroup group_hesv_batched Hermitian indefinite
@brief Solves $Ax = b$ using indefinite factorization for Hermitian matrices
@{
@defgroup magma_hesv_batched hesv: Solves Ax = b using symmetric indefinite factorization (driver)
@defgroup magma_hesv_nopiv_batched hesv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver)
@defgroup magma_hetrf_batched hetrf: Symmetric indefinite factorization
@defgroup magma_hetrs_batched hetrs: Symmetric indefinite forward and back solves
@defgroup magma_hetri_batched hetri: Symmetric indefinite inverse
@defgroup magma_herfs_batched herfs: Refine solution
@defgroup magma_hesv_aux_batched Auxiliary routines
@{
@defgroup magma_lahef_batched lahef: Partial factorization; used by hetrf
@}
@}
@defgroup group_sysv_batched Symmetric indefinite
@brief Solves $Ax = b$ using indefinite factorization for symmetric matrices
@{
@defgroup magma_sysv_batched sysv: Solves Ax = b using symmetric indefinite factorization (driver)
@defgroup magma_sysv_nopiv_batched sysv: Solves Ax = b using symmetric indefinite factorization - no pivoting (driver)
@defgroup magma_sytrf_batched sytrf: Symmetric indefinite factorization
@defgroup magma_sytrs_batched sytrs: Symmetric indefinite forward and back solves
@defgroup magma_sytri_batched sytri: Symmetric indefinite inverse
@defgroup magma_syrfs_batched syrfs: Refine solution
@defgroup magma_sysv_aux_batched Auxiliary routines
@{
@defgroup magma_lasyf_batched lasyf: Partial factorization; used by sytrf
@}
@}
@}
------------------------------------------------------------
@defgroup group_orthogonal_batched Orthogonal/unitary factorizations
@brief Factor $A$ using $QR, RQ, QL, LQ$
@{
@defgroup group_qr_batched QR factorization
@brief Factor $A = QR$
@{
@defgroup magma_geqrf_batched geqrf: QR factorization
@defgroup magma_unmqr_batched or/unmqr: Multiply by Q from QR factorization
@defgroup magma_ungqr_batched or/ungqr: Generate Q from QR factorization
@defgroup magma_qr_aux_batched Auxiliary routines
@{
@defgroup magma_geqr2_batched geqr2: QR panel factorization
@defgroup magma_geqrf_copy_upper_batched copy V to R
@}
@}
@defgroup group_rq_batched RQ factorization
@brief Factor $A = RQ$
@{
@defgroup magma_gerqf_batched gerqf: RQ factorization
@defgroup magma_unmrq_batched or/unmrq: Multiply by Q from RQ factorization
@defgroup magma_ungrq_batched or/ungrq: Generate Q from RQ factorization
@}
@defgroup group_ql_batched QL factorization
@brief Factor $A = QL$
@{
@defgroup magma_geqlf_batched geqlf: QL factorization
@defgroup magma_unmql_batched or/unmql: Multiply by Q from QL factorization
@defgroup magma_ungql_batched or/ungql: Generate Q from QL factorization
@}
@defgroup group_lq_batched LQ factorization
@brief Factor $A = LQ$
@{
@defgroup magma_gelqf_batched gelqf: LQ factorization
@defgroup magma_unmlq_batched or/unmlq: Multiply by Q from LQ factorization
@defgroup magma_unglq_batched or/unglq: Generate Q from LQ factorization
@}
@}
------------------------------------------------------------
@defgroup group_blas_batched MAGMA BLAS and Auxiliary
@brief Batched BLAS and Auxiliary functions.
@{
@defgroup group_blas1_batched Level 1: vectors operations, O(n) work
@brief Vector operations that perform $O(n)$ work on $O(n)$ data.
@{
@defgroup magma_asum_batched asum: Sum vector
@brief $\sum_i |x_i|$
@defgroup magma_axpy_batched axpy: Add vectors
@brief $y = \alpha x + y$
@defgroup magma_copy_batched copy: Copy vector
@brief $y = x$
@defgroup magma__dot_batched dot: Dot (inner) product
@brief $x^T y$
or $x^H y$
@defgroup magma_iamax_batched iamax: Find max element
@brief $\text{argmax}_i\; |x_i|$
@defgroup magma_iamin_batched iamin: Find min element
@brief $\text{argmin}_i\; |x_i|$
@defgroup magma_nrm2_batched nrm2: Vector 2 norm
@brief $||x||_2$
@defgroup magma_rot_batched rot: Apply Givens rotation
@defgroup magma_rotg_batched rotg: Generate Givens rotation
@defgroup magma_rotm_batched rotm: Apply modified Givens rotation
@defgroup magma_rotmg_batched rotmg: Generate modified Givens rotation
@defgroup magma_scal_batched scal: Scale vector
@brief $x = \alpha x$
@defgroup magma_swap_batched swap: Swap vectors
@brief $x <=> y$
@}
@defgroup group_blas2_batched Level 2: matrix-vector operations, O(n^2) work
@brief Matrix operations that perform $O(n^2)$ work on $O(n^2)$ data.
These are memory bound, since every operation requires a memory read or write.
@{
@defgroup magma_geadd_batched geadd: Add matrices
@brief $B = \alpha A + \beta B$
@defgroup magma_gemv_batched gemv: General matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_ger_batched ger: General matrix rank 1 update
@brief $A = \alpha xy^T + A$
@defgroup magma_hemv_batched hemv: Hermitian matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_her_batched her: Hermitian rank 1 update
@brief $A = \alpha xx^T + A$
@defgroup magma_her2_batched her2: Hermitian rank 2 update
@brief $A = \alpha xy^T + \alpha yx^T + A$
@defgroup magma_symv_batched symv: Symmetric matrix-vector multiply
@brief $y = \alpha Ax + \beta y$
@defgroup magma_syr_batched syr: Symmetric rank 1 update
@brief $A = \alpha xx^T + A$
@defgroup magma_syr2_batched syr2: Symmetric rank 2 update
@brief $A = \alpha xy^T + \alpha yx^T + A$
@defgroup magma_trmv_batched trmv: Triangular matrix-vector multiply
@brief $x = Ax$
@defgroup magma_trsv_batched trsv: Triangular matrix-vector solve
@brief $x = op(A^{-1})\; b$
----
@defgroup magma_swapblk_batched swapblk: Swap several rows
@defgroup magma_swapdblk_batched swapdblk: Swap diagonal blocks
@defgroup magma_symmetrize_batched symmetrize: Symmetrize matrix
@brief $\text{upper}(A) = \text{lower}(A)^T$
or $\text{lower}(A) = \text{upper}(A)^T$
@defgroup magma_transpose_batched transpose: Transpose matrix
@brief $B = A^T$
or $B = A^H$
@defgroup magma_lacgv_batched lacgv: Conjugate vector
@brief $x = conj(x)$
@defgroup magma_lacpy_batched lacpy: Copy matrix
@brief $B = A$
@defgroup magma_lascl_batched lascl: Scale matrix by scalar
@brief $A = \alpha A$
@defgroup magma_lascl2_batched lascl2: Scale matrix by diagonal
@brief $A = D A$
@defgroup magma_laset_batched laset: Set matrix to constants
@brief $A_{ij} =$ diag if $i=j$;
$A_{ij} =$ offdiag otherwise.
@}
@defgroup group_blas3_batched Level 3: matrix-matrix operations, O(n^3) work
@brief Matrix-matrix operations that perform $O(n^3)$ work on $O(n^2)$ data.
These benefit from cache reuse, since many operations can be
performed for every read from main memory.
@{
@defgroup magma_gemm_batched gemm: General matrix multiply: C = AB + C
@brief $C = \alpha \;op(A) \;op(B) + \beta C$
@defgroup magma_hemm_batched hemm: Hermitian matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is Hermitian
@defgroup magma_herk_batched herk: Hermitian rank k update
@brief $C = \alpha A A^T + \beta C$ where $C$ is Hermitian
@defgroup magma_her2k_batched her2k: Hermitian rank 2k update
@brief $C = \alpha A B^T + \alpha B A^T + \beta C$ where $C$ is Hermitian
@defgroup magma_symm_batched symm: Symmetric matrix multiply
@brief $C = \alpha A B + \beta C$
or $C = \alpha B A + \beta C$ where $A$ is symmetric
@defgroup magma_syrk_batched syrk: Symmetric rank k update
@brief $C = \alpha A A^T + \beta C$ where $C$ is symmetric
@defgroup magma_syr2k_batched syr2k: Symmetric rank 2k update
@brief $C = \alpha A B^T + \alpha B A^T + \beta C$ where $C$ is symmetric
@defgroup magma_trmm_batched trmm: Triangular matrix multiply
@brief $B = \alpha \;op(A)\; B$
or $B = \alpha B \;op(A) $ where $A$ is triangular
@defgroup magma_trsm_batched trsm: Triangular solve matrix
@brief $C = op(A)^{-1} B $
or $C = B \;op(A)^{-1}$ where $A$ is triangular
@defgroup magma_trtri_batched trtri: Triangular inverse; used in getri, potri
@brief $A = A^{-1}$ where $A$ is triangular
@defgroup magma_trtri_diag_batched trtri_diag: Invert diagonal blocks of triangular matrix; used in trsm
@}
@defgroup group_larf_batched Householder reflectors
@{
@defgroup magma_larf_batched larf: Apply Householder reflector to general matrix
@defgroup magma_larfy_batched larfy: Apply Householder reflector to symmetric/Hermitian matrix
@defgroup magma_larfg_batched larfg: Generate Householder reflector
@defgroup magma_larfb_batched larfb: Apply block of Householder reflectors (Level 3)
@defgroup magma_larft_batched larft: Generate T matrix for block of Householder reflectors
@}
@defgroup group_mixed_batched Precision conversion
@{
@defgroup magma_lag2_batched _lag2_: Converts general matrix between single and double
@defgroup magma_lat2_batched _lat2_: Converts triangular matrix between single and double
@}
@defgroup group_norms_batched Matrix norms
@{
@defgroup magma_lange_batched lange: General matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@defgroup magma_lanhe_batched lansy/he: Symmetric/Hermitian matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@defgroup magma_lantr_batched lantr: Triangular matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@}
@}
@}
============================================================
@defgroup sparse Sparse LA
@brief Routines for sparse linear algebra
@{
------------------------------------------------------------
@defgroup sparse_solvers Sparse linear systems
@brief Solve $Ax = b$
@{
@defgroup sparse_gesv General matrices
@brief Solve $Ax = b$, for general $A$
@{
@defgroup magmasparse_sgesv single precision
@defgroup magmasparse_dgesv double precision
@defgroup magmasparse_cgesv single-complex precision
@defgroup magmasparse_zgesv double-complex precision
@}
@defgroup sparse_posv Symmetric/Hermitian positive definite
@brief Solve $Ax = b$,
for symmetric/Hermitian positive definite (SPD) $A$
@{
@defgroup magmasparse_sposv single precision
@defgroup magmasparse_dposv double precision
@defgroup magmasparse_cposv single-complex precision
@defgroup magmasparse_zposv double-complex precision
@}
@}
------------------------------------------------------------
@defgroup sparse_eigenvalue Sparse eigenvalues
@brief Solve $Ax = \lambda x$
@{
@defgroup sparse_heev Symmetric/Hermitian eigenvalues
@brief Solve $Ax = \lambda x$ for symmetric/Hermitian $A$
@{
@defgroup magmasparse_ssyev single precision
@defgroup magmasparse_dsyev double precision
@defgroup magmasparse_cheev single-complex precision
@defgroup magmasparse_zheev double-complex precision
@}
@}
------------------------------------------------------------
@defgroup sparse_precond Sparse preconditioners
@brief Preconditioner for solving $Ax = \lambda x$
@{
@defgroup sparse_gepr General matrix preconditioner
@brief Preconditioners for non-symmetric $A$
@{
@defgroup magmasparse_sgepr single precision
@defgroup magmasparse_dgepr double precision
@defgroup magmasparse_cgepr single-complex precision
@defgroup magmasparse_zgepr double-complex precision
@}
@defgroup sparse_hepr Symmetric/Hermitian preconditioner
@brief Preconditioners for symmetric/Hermitian $A$
@{
@defgroup magmasparse_shepr single precision
@defgroup magmasparse_dhepr double precision
@defgroup magmasparse_chepr single-complex precision
@defgroup magmasparse_zhepr double-complex precision
@}
@}
------------------------------------------------------------
@defgroup sparse_gpukernels Sparse GPU kernels
@{
@defgroup sparse_gegpuk GPU kernels for non-symmetric sparse LA
@{
@defgroup magmasparse_sgegpuk single precision
@defgroup magmasparse_dgegpuk double precision
@defgroup magmasparse_cgegpuk single-complex precision
@defgroup magmasparse_zgegpuk double-complex precision
@}
@defgroup sparse_sygpuk GPU kernels for symmetric/Hermitian sparse LA
@{
@defgroup magmasparse_ssygpuk single precision
@defgroup magmasparse_dsygpuk double precision
@defgroup magmasparse_csygpuk single-complex precision
@defgroup magmasparse_zsygpuk double-complex precision
@}
@}
------------------------------------------------------------
@defgroup sparse_blas Sparse BLAS
@{
@defgroup magmasparse_sblas single precision
@defgroup magmasparse_dblas double precision
@defgroup magmasparse_cblas single-complex precision
@defgroup magmasparse_zblas double-complex precision
@}
------------------------------------------------------------
@defgroup sparse_aux Sparse auxiliary
@{
@defgroup magmasparse_saux single precision
@defgroup magmasparse_daux double precision
@defgroup magmasparse_caux single-complex precision
@defgroup magmasparse_zaux double-complex precision
@}
------------------------------------------------------------
@defgroup unfiled Sparse ** unfiled **
@{
@defgroup magmasparse_s single precision
@defgroup magmasparse_d double precision
@defgroup magmasparse_c single-complex precision
@defgroup magmasparse_z double-complex precision
@}
@}
============================================================
@defgroup magma_internal Internal routines
@{
@defgroup magma_error_internal Error handling
@defgroup magma_testing Testing routines
@defgroup magma_thread Thread management
@defgroup magma_timer Timer utilities
@defgroup magma_panel2q QR panel to q, q to panel
@defgroup magma_kernel GPU Kernels
@}
============================================================
@defgroup magma_deprecated Deprecated
@brief Deprecated routines will be removed in the next MAGMA release.
The MAGMA v1 interface is deprecated.
Portions of MAGMA-sparse are deprecated,
and all of MAGMA-sparse is "maintenance only".
@{
@defgroup magma_deprecated_v1 Deprecated MAGMA v1 interface
@defgroup magma_deprecated_sparse Deprecated MAGMA-sparse
@}
*/
/*
@defgroup group_unused Unused
@brief Functions that LAPACK (or another package) have, which MAGMA does not have.
@{
@defgroup magma_gerfs gerfs: Refine solution
@defgroup magma_porfs porfs: Refine solution
@defgroup magma_hetrs hetrs: symmetric/Hermitian indefinite forward and back solves
@defgroup magma_hetri hetri: symmetric/Hermitian indefinite inverse
@defgroup magma_herfs herfs: Refine solution
@defgroup magma_sysv sysv: Solves Ax = b using symmetric indefinite factorization (driver)
@defgroup magma_sytrf sytrf: Symmetric indefinite factorization (Bunch-Kaufman pivoting)
@defgroup magma_sytrf_aasen sytrf: Symmetric indefinite factorization (Aasen)
@defgroup magma_sytrs sytrs: Symmetric indefinite forward and back solves
@defgroup magma_sytri sytri: Symmetric indefinite inverse
@defgroup magma_syrfs syrfs: Refine solution
@defgroup magma_lasyf lasyf: Partial factorization; used by sytrf
@defgroup magma_unmhr or/unmhr: Multiply by Q from Hessenberg reduction
@defgroup magma_lahrd lahrd: Partial factorization; used by gehrd
@defgroup magma_laex2 laex2: Merge two sets of eigenvalues.
@defgroup magma_larf larf: Apply Householder reflector to general matrix
@defgroup magma_larft larft: Generate T matrix for block of Householder reflectors
@defgroup magma_lantr lantr: Triangular matrix norm
@brief 1, Frobenius, or Infinity norm; or largest element
@defgroup magma_heev sy/heev: Solves using QR iteration (driver)
@defgroup magma_heevrx sy/heevrx: Solves using MRRR (expert)
@defgroup magma_hegv sy/hegv: Solves using QR iteration (driver)
@defgroup magma_hegvrx sy/hegvrx: Solves using MRRR (expert)
@}
*/
|