1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@generated from magmablas/zgemv_vbatched.cpp, normal z -> c, Wed Jan 22 14:42:08 2025
@author Ahmad Abdelfattah
*/
#include "magma_internal.h"
#include "commonblas_c.h"
#define PRECISION_c
/******************************************************************************/
extern "C" void
magmablas_cgemv_vbatched_max(
magma_trans_t trans, magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex_ptr dA_array[], magma_int_t* ldda,
magmaFloatComplex_ptr dx_array[], magma_int_t* incx,
magmaFloatComplex beta,
magmaFloatComplex_ptr dy_array[], magma_int_t* incy,
magma_int_t batchCount,
magma_int_t max_m, magma_int_t max_n, magma_queue_t queue)
{
magma_int_t info = 0;
info = magma_gemv_vbatched_checker( trans, m, n, ldda, incx, incy, batchCount, queue );
if (info != 0) {
magma_xerbla( __func__, -(info) );
return;
}
magmablas_cgemv_vbatched_max_nocheck(
trans,
m, n,
alpha, dA_array, ldda,
dx_array, incx,
beta, dy_array, incy,
batchCount, max_m, max_n, queue);
}
/******************************************************************************/
extern "C" void
magmablas_cgemv_vbatched_nocheck(
magma_trans_t trans, magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex_ptr dA_array[], magma_int_t* ldda,
magmaFloatComplex_ptr dx_array[], magma_int_t* incx,
magmaFloatComplex beta,
magmaFloatComplex_ptr dy_array[], magma_int_t* incy,
magma_int_t batchCount, magma_queue_t queue)
{
// compute the max. dimensions
magma_imax_size_2(m, n, batchCount, queue);
magma_int_t max_m, max_n;
magma_igetvector_async(1, &m[batchCount], 1, &max_m, 1, queue);
magma_igetvector_async(1, &n[batchCount], 1, &max_n, 1, queue);
magma_queue_sync( queue );
magmablas_cgemv_vbatched_max_nocheck(
trans,
m, n,
alpha, dA_array, ldda,
dx_array, incx,
beta, dy_array, incy,
batchCount, max_m, max_n, queue);
}
/***************************************************************************//**
Purpose
-------
CGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or
y := alpha*A**T*x + beta*y, or
y := alpha*A**H*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
Arguments
----------
@param[in]
trans magma_trans_t
On entry, TRANS specifies the operation to be performed as
follows:
- = MagmaNoTrans: y := alpha*A *x + beta*y
- = MagmaTrans: y := alpha*A^T*x + beta*y
- = MagmaConjTrans: y := alpha*A^H*x + beta*y
@param[in]
m Array of integers, dimension (batchCount + 1).
On entry, each INTEGER M specifies the number of rows of each matrix A.
The last element of the array is used internally by the routine.
@param[in]
n Array of integers, dimension (batchCount + 1).
On entry, each INTEGER N specifies the number of columns of each matrix A
The last element of the array is used internally by the routine.
@param[in]
alpha COMPLEX
On entry, ALPHA specifies the scalar alpha.
@param[in]
dA_array Array of pointers, dimension (batchCount).
Each is a COMPLEX array A of DIMENSION ( LDDA, N ) on the GPU
@param[in]
ldda Array of integers, dimension (batchCount + 1).
Each INTEGER LDDA specifies the leading dimension of each matrix A.
@param[in]
dx_array Array of pointers, dimension (batchCount).
Each is a COMPLEX array of dimension
N if trans == MagmaNoTrans
M if trans == MagmaTrans or MagmaConjTrans
@param[in]
incx Array of integers, dimension (batchCount + 1).
Each integer specifies the increment for the elements of each vector X.
INCX must not be zero.
The last element of the array is used internally by the routine.
@param[in]
beta COMPLEX
On entry, ALPHA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
@param[out]
dy_array Array of pointers, dimension (batchCount).
Each is a COMPLEX array of dimension
M if trans == MagmaNoTrans
N if trans == MagmaTrans or MagmaConjTrans
@param[in]
incy Array of integers, dimension (batchCount + 1).
Each integer specifies the increment for the elements of each vector Y.
INCY must not be zero.
The last element of the array is used internally by the routine.
@param[in]
batchCount INTEGER
The number of matrices to operate on.
@param[in]
queue magma_queue_t
Queue to execute in.
@ingroup magma_gemv_batched
*******************************************************************************/
extern "C" void
magmablas_cgemv_vbatched(
magma_trans_t trans, magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex_ptr dA_array[], magma_int_t* ldda,
magmaFloatComplex_ptr dx_array[], magma_int_t* incx,
magmaFloatComplex beta,
magmaFloatComplex_ptr dy_array[], magma_int_t* incy,
magma_int_t batchCount, magma_queue_t queue)
{
magma_int_t info = 0;
info = magma_gemv_vbatched_checker( trans, m, n, ldda, incx, incy, batchCount, queue );
if (info != 0) {
magma_xerbla( __func__, -(info) );
return;
}
// compute the max. dimensions
magma_imax_size_2(m, n, batchCount, queue);
magma_int_t max_m, max_n;
magma_igetvector_async(1, &m[batchCount], 1, &max_m, 1, queue);
magma_igetvector_async(1, &n[batchCount], 1, &max_n, 1, queue);
magma_queue_sync( queue );
magmablas_cgemv_vbatched_max_nocheck(
trans,
m, n,
alpha, dA_array, ldda,
dx_array, incx,
beta, dy_array, incy,
batchCount, max_m, max_n, queue);
}
|