1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@generated from magmablas/ztrmm_vbatched.cpp, normal z -> c, Wed Jan 22 14:42:09 2025
@author Ahmad Abdelfattah
*/
#include "magma_internal.h"
#include "commonblas_c.h"
#define PRECISION_c
/******************************************************************************/
extern "C" void
magmablas_ctrmm_vbatched_max_nocheck(
magma_side_t side, magma_uplo_t uplo, magma_trans_t transA, magma_diag_t diag,
magma_int_t max_m, magma_int_t max_n, magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex **dA_array, magma_int_t* ldda,
magmaFloatComplex **dB_array, magma_int_t* lddb,
magma_int_t batchCount, magma_queue_t queue )
{
if ( max_m <= 0 || max_n <= 0 )
return;
magmablas_ctrmm_vbatched_core(
side, uplo, transA, diag,
max_m, max_n, m, n,
alpha, dA_array, 0, 0, ldda,
dB_array, 0, 0, lddb,
batchCount, queue );
}
/******************************************************************************/
extern "C" void
magmablas_ctrmm_vbatched_max(
magma_side_t side, magma_uplo_t uplo, magma_trans_t transA, magma_diag_t diag,
magma_int_t max_m, magma_int_t max_n, magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex **dA_array, magma_int_t* ldda,
magmaFloatComplex **dB_array, magma_int_t* lddb,
magma_int_t batchCount, magma_queue_t queue )
{
magma_int_t info = 0;
info = magma_trmm_vbatched_checker(side, uplo, transA, diag, m, n, ldda, lddb, batchCount, queue);
if (info != 0) {
magma_xerbla( __func__, -(info) );
return;
}
magmablas_ctrmm_vbatched_max_nocheck(
side, uplo, transA, diag,
max_m, max_n, m, n,
alpha, dA_array, ldda,
dB_array, lddb,
batchCount,
queue );
}
/******************************************************************************/
extern "C" void
magmablas_ctrmm_vbatched_nocheck(
magma_side_t side, magma_uplo_t uplo, magma_trans_t transA, magma_diag_t diag,
magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex **dA_array, magma_int_t* ldda,
magmaFloatComplex **dB_array, magma_int_t* lddb,
magma_int_t batchCount, magma_queue_t queue )
{
// compute the max. dimensions
magma_imax_size_2(m, n, batchCount, queue);
magma_int_t max_m, max_n;
magma_igetvector_async(1, &m[batchCount], 1, &max_m, 1, queue);
magma_igetvector_async(1, &n[batchCount], 1, &max_n, 1, queue);
magma_queue_sync( queue );
magmablas_ctrmm_vbatched_max_nocheck(
side, uplo, transA, diag,
max_m, max_n, m, n,
alpha, dA_array, ldda,
dB_array, lddb,
batchCount, queue );
}
/***************************************************************************//**
Purpose
=======
CTRMM performs one of the matrix-matrix operations
B := alpha*op( A )*B, or B := alpha*B*op( A )
where alpha is a scalar, B is an m by n matrix, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
Parameters
==========
@param[in]
side magma_side_t.
On entry, side specifies whether op( A ) multiplies B from
the left or right as follows:
side = magmaLeft B := alpha*op( A )*B.
side = magmaRight B := alpha*B*op( A ).
Unchanged on exit.
@param[in]
uplo magma_uplo_t.
On entry, uplo specifies whether the matrix A is an upper or
lower triangular matrix as follows:
uplo = magmaUpper A is an upper triangular matrix.
uplo = magmaLower A is a lower triangular matrix.
Unchanged on exit.
@param[in]
transA magma_trans_t.
On entry, transA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
transA = MagmaNoTrans op( A ) = A.
transA = MagmaTrans op( A ) = A'.
transA = MagmaConjTrans op( A ) = conjg( A' ).
Unchanged on exit.
@param[in]
diag magma_diag_t.
On entry, diag specifies whether or not A is unit triangular
as follows:
diag = MagmaUnit A is assumed to be unit triangular.
diag = MagmaNonUnit A is not assumed to be unit
triangular.
Unchanged on exit.
@param[in]
m INTEGER array, dimension(batchCount + 1).
On entry, each integer M specifies the number of rows of the corresponding
matrix B. M must be at least zero.
Unchanged on exit.
@param[in]
n INTEGER array, dimension(batchCount + 1).
On entry, each integer n specifies the number of columns of the corresponding
matrix B. N must be at least zero.
Unchanged on exit.
@param[in]
alpha DOUBLE COMPLEX.
On entry, alpha specifies the scalar alpha. When alpha is
zero then A is not referenced and B need not be set before
entry.
Unchanged on exit.
@param[in]
dA_array Array of pointers, dimension(batchCount).
Each is a DOUBLE COMPLEX array A of DIMENSION ( ldda, k ), where k is M
when side = magmaLeft and is N when side = magmaRight.
Before entry with uplo = magmaUpper, the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with uplo = magmaLower, the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when diag = MagmaUnit, the diagonal elements of
A are not referenced either, but are assumed to be unity.
Unchanged on exit.
@param[in]
ldda INTEGER array, dimension(batchCount + 1).
On entry, ldda specifies the first dimension of A as declared
in the calling (sub) program. When side = magmaLeft then
ldda must be at least max( 1, M ), when side = magmaRight
then ldda must be at least max( 1, N ).
Unchanged on exit.
@param[in,out]
dB_array Array of pointers, dimension(batchCount).
Each is a DOUBLE COMPLEX array B of DIMENSION ( lddb, N ).
Before entry, the leading M by N part of the array B must
contain the matrix B, and on exit is overwritten by the
transformed matrix.
@param[in]
lddb INTEGER array, dimension(batchCount + 1).
On entry, lddb specifies the first dimension of B as declared
in the calling (sub) program. lddb must be at least
max( 1, M ).
Unchanged on exit.
@param[in]
batchCount INTEGER.
The number of matrices to operate on.
@param[in]
queue magma_queue_t.
Queue to execute in.
@ingroup magma_trmm_batched
*******************************************************************************/
extern "C" void
magmablas_ctrmm_vbatched(
magma_side_t side, magma_uplo_t uplo, magma_trans_t transA, magma_diag_t diag,
magma_int_t* m, magma_int_t* n,
magmaFloatComplex alpha,
magmaFloatComplex **dA_array, magma_int_t* ldda,
magmaFloatComplex **dB_array, magma_int_t* lddb,
magma_int_t batchCount, magma_queue_t queue )
{
magma_int_t info = 0;
info = magma_trmm_vbatched_checker(side, uplo, transA, diag, m, n, ldda, lddb, batchCount, queue);
if (info != 0) {
magma_xerbla( __func__, -(info) );
return;
}
// compute the max. dimensions
magma_imax_size_2(m, n, batchCount, queue);
magma_int_t max_m, max_n;
magma_igetvector_async(1, &m[batchCount], 1, &max_m, 1, queue);
magma_igetvector_async(1, &n[batchCount], 1, &max_n, 1, queue);
magma_queue_sync( queue );
magmablas_ctrmm_vbatched_max_nocheck(
side, uplo, transA, diag,
max_m, max_n, m, n,
alpha, dA_array, ldda,
dB_array, lddb,
batchCount, queue );
}
|