1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#!/usr/bin/env python
#
# Parses MAGMA output and generates a python file,
# storing each run into its own numpy array.
#
# @author Mark Gates
import sys
import os
import re
import numpy
# --------------------
class data_t( object ):
def __init__( self ):
self.reset()
def reset( self ):
self.cmd = []
self.name = ''
self.name_usage = ''
self.rows = []
#end
# --------------------
# output one run as numpy array
def output( data ):
if ( not data.rows ):
return
if ( not data.name ):
data.name = data.name_usage
if ( not data.name ):
data.name = 'unknown'
# find maximum width of each column and make printf format
n = len( data.rows[0] )
maxwidths = [0] * n
for row in data.rows:
if ( len(row) != n ):
print '# error: row has', len(row), 'fields; first row had', n, 'fields'
continue
widths = map( len, row )
for i in xrange( n ):
maxwidths[i] = max( maxwidths[i], widths[i] )
formats = map( lambda x: '%%%ds' % x, maxwidths )
format = '\t[ ' + ', '.join( formats ) + ' ],'
# output table
for cmd in data.cmd:
print '#', cmd
print data.name, '= array(['
for row in data.rows:
#print format, row
try:
print format % tuple(row)
except:
print '# ERROR', format, row
print '])\n'
data.reset()
# end
# --------------------
# process one file
def process( filename ):
warmup = 0
print '# ------------------------------------------------------------'
print '# file:', filename
data = data_t()
keys = []
tables = {}
infile = open( filename )
for line in infile:
# look for header line
m = re.search( r'^(?:numactl.*)?testing_(\w+)', line )
if ( m ):
name = m.group(1)
m2 = re.search( r'-([LU])\b', line ) # lower/upper
if ( m2 ): name += '_' + m2.group(1)
m2 = re.search( r'-([UV][ASON])\b', line ) # svd U & V vectors
if ( m2 ): name += '_' + m2.group(1)
m2 = re.search( r'-([JRL][NV])\b', line ) # syev job vectors, geev right & left vectors
if ( m2 ): name += '_' + m2.group(1)
# code repeated below
if ( name in keys ):
data = tables[name]
else:
data = data_t()
data.name = name
keys.append( name )
tables[name] = data
# end
data.cmd.append( line.strip() )
warmup = 2
continue
# end
# look for usage line (in case no header line)
m = re.search( r'Usage: ./testing_(\w+)', line )
if ( m ):
name = m.group(1)
if ( data.rows ):
# new table with no header
# code repeated above
if ( name in keys ):
data = tables[name]
else:
data = data_t()
data.name = name
keys.append( name )
tables[name] = data
# end
data.cmd.append( line.strip() )
warmup = 2
continue
else:
# table had header
data.name_usage = name
# end
# look for data lines
# differentiating data lines from other output is not so easy.
# look for lines containing numbers and excluding certain punctuation
m = re.search( r'\b\d+\.\d+\b', line )
m2 = re.search( r'[%#:=/,]', line )
if ( m and not m2 ):
# remove () parens
# convert --- and words (usually options like "S") to nan
line2 = re.sub( r'[()]', ' ', line )
line2 = re.sub( r'\b[a-zA-Z]+\b', ' nan ', line2 )
line2 = re.sub( r'\s---\s', ' nan ', line2 )
line2 = line2.strip()
# gesvd has two job columns, usually the same, while gesdd has
# only one job column. This eliminates 2nd job column for gesvd.
if ( re.search( 'gesvd', data.name )):
line2 = re.sub( r'^( *nan) +nan', r'\1', line2 )
fields = re.split( ' +', line2 )
# verify that everything is numeric
try:
map( float, fields )
except:
print >>sys.stderr, 'ignoring:', line.strip() #, '\n> ', line2
continue
# skip warmup runs (N = 123, 1234 in first two runs)
if ( warmup > 0 ):
warmup -= 1
m = re.search( r'^ *([a-zA-Z]+ +)*(1000?|1234?)\b', line )
if ( m ):
continue
# for gesvd, skip second field, jobv
# this makes it match gesdd, which has only job, not jobu and jobv
if ( data.name[1:] == 'gesvd' ):
fields = fields[0:1] + fields[2:]
data.rows.append( fields )
# end
# end
for key in keys:
output( tables[key] )
# end
# --------------------
print 'import numpy'
print 'from numpy import array, nan, inf'
print
if ( len(sys.argv) > 1 ):
m = re.search( 'v?(\d+\.\d+\.\d+|trunk)/cuda(\d+\.\d+)-(.*)/', sys.argv[1] )
if ( m ):
print "version = '%s'" % (m.group(1))
print "cuda = '%s'" % (m.group(2))
print "device = '%s'" % (m.group(3))
print "cpu = 'unknown'"
print
else:
print "version = 'unknown'"
print "cuda = 'unknown'"
print "device = 'unknown'"
print "cpu = 'unknown'"
print
print >>sys.stderr, "\nWarning: no version information\n"
# end
# end
for f in sys.argv[1:]:
process( f )
|