File: cbicgstab.cpp

package info (click to toggle)
magma 2.9.0%2Bds-2
  • links: PTS, VCS
  • area: contrib
  • in suites: trixie
  • size: 83,212 kB
  • sloc: cpp: 709,115; fortran: 121,916; ansic: 32,343; python: 25,603; f90: 15,208; makefile: 942; xml: 253; csh: 232; sh: 203; perl: 104
file content (217 lines) | stat: -rw-r--r-- 7,706 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
    -- MAGMA (version 2.9.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date January 2025

       @generated from sparse/src/zbicgstab.cpp, normal z -> c, Wed Jan 22 14:42:34 2025
       @author Hartwig Anzt

*/
#include "magmasparse_internal.h"

#define RTOLERANCE     lapackf77_slamch( "E" )
#define ATOLERANCE     lapackf77_slamch( "E" )


/**
    Purpose
    -------

    Solves a system of linear equations
       A * X = B
    where A is a general matrix.
    This is a GPU implementation of the Biconjugate Gradient Stabilized method.

    Arguments
    ---------

    @param[in]
    A           magma_c_matrix
                input matrix A

    @param[in]
    b           magma_c_matrix
                RHS b

    @param[in,out]
    x           magma_c_matrix*
                solution approximation

    @param[in,out]
    solver_par  magma_c_solver_par*
                solver parameters
    @param[in]
    queue       magma_queue_t
                Queue to execute in.

    @ingroup magmasparse_cgesv
    ********************************************************************/

extern "C" magma_int_t
magma_cbicgstab(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_BICGSTAB;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;

    // some useful variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO;
    magmaFloatComplex c_one  = MAGMA_C_ONE;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    
    magma_int_t dofs = A.num_rows * b.num_cols;

    // workspace
    magma_c_matrix r={Magma_CSR}, rr={Magma_CSR}, p={Magma_CSR}, v={Magma_CSR}, s={Magma_CSR}, t={Magma_CSR};
    CHECK( magma_cvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &rr,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver variables
    magmaFloatComplex alpha, beta, omega, rho_old, rho_new;
    float betanom, nom0, r0, res, nomb;
    //float den;

    // solver setup
    CHECK(  magma_cresidualvec( A, b, *x, &r, &nom0, queue));
    magma_ccopy( dofs, r.dval, 1, rr.dval, 1, queue );                  // rr = r
    betanom = nom0;
    rho_new = magma_cdotc( dofs, r.dval, 1, r.dval, 1, queue );             // rho=<rr,r>
    rho_old = omega = alpha = MAGMA_C_MAKE( 1.0, 0. );
    solver_par->init_res = nom0;

    CHECK( magma_c_spmv( c_one, A, r, c_zero, v, queue ));              // z = A r
    //den = MAGMA_C_REAL( magma_cdotc( dofs, v.dval, 1, r.dval, 1), queue ); // den = z' * r

    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nomb < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );


    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        rho_new = magma_cdotc( dofs, rr.dval, 1, r.dval, 1, queue );  // rho=<rr,r>
        beta = rho_new/rho_old * alpha/omega;   // beta=rho/rho_old *alpha/omega
        magma_cscal( dofs, beta, p.dval, 1, queue );                 // p = beta*p
        magma_caxpy( dofs, c_neg_one * omega * beta, v.dval, 1 , p.dval, 1, queue );
                                                        // p = p-omega*beta*v
        magma_caxpy( dofs, c_one, r.dval, 1, p.dval, 1, queue );      // p = p+r
        CHECK( magma_c_spmv( c_one, A, p, c_zero, v, queue ));      // v = Ap
        solver_par->spmv_count++;
        alpha = rho_new / magma_cdotc( dofs, rr.dval, 1, v.dval, 1, queue );
        magma_ccopy( dofs, r.dval, 1 , s.dval, 1, queue );            // s=r
        magma_caxpy( dofs, c_neg_one * alpha, v.dval, 1 , s.dval, 1, queue ); // s=s-alpha*v

        CHECK( magma_c_spmv( c_one, A, s, c_zero, t, queue ));       // t=As
        solver_par->spmv_count++;
        omega = magma_cdotc( dofs, t.dval, 1, s.dval, 1, queue )   // omega = <s,t>/<t,t>
                   / magma_cdotc( dofs, t.dval, 1, t.dval, 1, queue );

        magma_caxpy( dofs, alpha, p.dval, 1 , x->dval, 1, queue );     // x=x+alpha*p
        magma_caxpy( dofs, omega, s.dval, 1 , x->dval, 1, queue );     // x=x+omega*s

        magma_ccopy( dofs, s.dval, 1 , r.dval, 1, queue );             // r=s
        magma_caxpy( dofs, c_neg_one * omega, t.dval, 1 , r.dval, 1, queue ); // r=r-omega*t
        res = betanom = magma_scnrm2( dofs, r.dval, 1, queue );

        rho_old = rho_new;                                    // rho_old=rho

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*nomb ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r, queue );
    magma_cmfree(&rr, queue );
    magma_cmfree(&p, queue );
    magma_cmfree(&v, queue );
    magma_cmfree(&s, queue );
    magma_cmfree(&t, queue );

    solver_par->info = info;
    return info;
}   /* magma_cbicgstab */