1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@author Hartwig Anzt
@generated from sparse/src/zparict_cpu.cpp, normal z -> d, Wed Jan 22 14:42:45 2025
*/
#include "magmasparse_internal.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#define PRECISION_d
/***************************************************************************//**
Purpose
-------
Generates an incomplete threshold Cholesky preconditioner via the ParILUT
algorithm. The strategy is to interleave a parallel fixed-point
iteration that approximates an incomplete factorization for a given nonzero
pattern with a procedure that adaptively changes the pattern.
Much of this algorithm has fine-grained parallelism, and can efficiently
exploit the compute power of shared memory architectures.
This is the routine used in the publication by Anzt, Chow, Dongarra:
''ParILUT - A new parallel threshold ILU factorization''
submitted to SIAM SISC in 2017.
This version uses the default setting which adds all candidates to the
sparsity pattern. It is the variant for SPD systems.
This function requires OpenMP, and is only available if OpenMP is activated.
The parameter list is:
precond.sweeps : number of ParILUT steps
precond.atol : absolute fill ratio (1.0 keeps nnz count constant)
Arguments
---------
@param[in]
A magma_d_matrix
input matrix A
@param[in]
b magma_d_matrix
input RHS b
@param[in,out]
precond magma_d_preconditioner*
preconditioner parameters
@param[in]
queue magma_queue_t
Queue to execute in.
@ingroup magmasparse_dgepr
*******************************************************************************/
extern "C"
magma_int_t
magma_dparict_cpu(
magma_d_matrix A,
magma_d_matrix b,
magma_d_preconditioner *precond,
magma_queue_t queue)
{
magma_int_t info = 0;
#ifdef _OPENMP
real_Double_t start, end;
real_Double_t t_rm=0.0, t_add=0.0, t_res=0.0, t_sweep1=0.0, t_sweep2=0.0,
t_cand=0.0, t_transpose1=0.0, t_transpose2=0.0, t_selectrm=0.0,
t_selectadd=0.0, t_nrm=0.0, t_total = 0.0, accum=0.0;
double sum, sumL;
magma_d_matrix hA={Magma_CSR},
hL={Magma_CSR}, oneL={Magma_CSR}, LT={Magma_CSR},
L={Magma_CSR}, L_new={Magma_CSR}, L0={Magma_CSR};
magma_int_t num_rmL;
double thrsL = 0.0;
magma_int_t num_threads = 1, timing = 1; // 1 = print timing
magma_int_t L0nnz;
#pragma omp parallel
{
num_threads = omp_get_max_threads();
}
CHECK(magma_dmtransfer(A, &hA, A.memory_location, Magma_CPU, queue));
// in case using fill-in
if (precond->levels > 0) {
CHECK(magma_dsymbilu(&hA, precond->levels, &hL, < , queue));
magma_dmfree(<, queue);
}
CHECK(magma_dmatrix_tril(hA, &L, queue));
CHECK(magma_dmtransfer(L, &L0, A.memory_location, Magma_CPU, queue));
CHECK(magma_dmatrix_addrowindex(&L, queue));
L0nnz=L.nnz;
if (timing == 1) {
printf("ilut_fill_ratio = %.6f;\n\n", precond->atol);
printf("performance_%d = [\n%%iter L.nnz U.nnz ILU-Norm candidat resid ILU-norm selectad add transp1 sweep1 selectrm remove sweep2 transp2 total accum\n", (int) num_threads);
}
//##########################################################################
for (magma_int_t iters =0; iters<precond->sweeps; iters++) {
t_rm=0.0; t_add=0.0; t_res=0.0; t_sweep1=0.0; t_sweep2=0.0; t_cand=0.0;
t_transpose1=0.0; t_transpose2=0.0; t_selectrm=0.0;
t_selectadd=0.0; t_nrm=0.0; t_total = 0.0;
// step 1: find candidates
start = magma_sync_wtime(queue);
magma_dmfree(<, queue);
magma_dcsrcoo_transpose(L, <, queue);
end = magma_sync_wtime(queue); t_transpose1+=end-start;
start = magma_sync_wtime(queue);
magma_dparict_candidates(L0, L, LT, &hL, queue);
end = magma_sync_wtime(queue); t_cand=+end-start;
// step 2: compute residuals (optional when adding all candidates)
start = magma_sync_wtime(queue);
magma_dparilut_residuals(hA, L, L, &hL, queue);
end = magma_sync_wtime(queue); t_res=+end-start;
start = magma_sync_wtime(queue);
magma_dmatrix_abssum(hL, &sumL, queue);
sum = sumL*2;
end = magma_sync_wtime(queue); t_nrm+=end-start;
// step 3: add candidates
start = magma_sync_wtime(queue);
CHECK(magma_dcsr_sort(&hL, queue));
end = magma_sync_wtime(queue); t_selectadd+=end-start;
start = magma_sync_wtime(queue);
CHECK(magma_dmatrix_cup( L, hL, &L_new, queue));
end = magma_sync_wtime(queue); t_add=+end-start;
magma_dmfree(&hL, queue);
// step 4: sweep
start = magma_sync_wtime(queue);
CHECK(magma_dparict_sweep_sync(&hA, &L_new, queue));
end = magma_sync_wtime(queue); t_sweep1+=end-start;
// step 5: select threshold to remove elements
start = magma_sync_wtime(queue);
num_rmL = max((L_new.nnz-L0nnz*(1+(precond->atol-1.)
*(iters+1)/precond->sweeps)), 0);
// pre-select: ignore the diagonal entries
CHECK(magma_dparilut_preselect(0, &L_new, &oneL, queue));
if (num_rmL>0) {
CHECK(magma_dparilut_set_thrs_randomselect(num_rmL,
&oneL, 0, &thrsL, queue));
} else {
thrsL = 0.0;
}
magma_dmfree(&oneL, queue);
end = magma_sync_wtime(queue); t_selectrm=end-start;
// step 6: remove elements
start = magma_sync_wtime(queue);
CHECK(magma_dparilut_thrsrm(1, &L_new, &thrsL, queue));
CHECK(magma_dmatrix_swap(&L_new, &L, queue));
magma_dmfree(&L_new, queue);
end = magma_sync_wtime(queue); t_rm=end-start;
// step 7: sweep
start = magma_sync_wtime(queue);
CHECK(magma_dparict_sweep_sync(&hA, &L, queue));
end = magma_sync_wtime(queue); t_sweep2+=end-start;
if (timing == 1) {
t_total = t_cand+t_res+t_nrm+t_selectadd+t_add+t_transpose1
+t_sweep1+t_selectrm+t_rm+t_sweep2+t_transpose2;
accum = accum + t_total;
printf("%5lld %5lld %5lld %.4e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e\n",
(long long) iters, (long long) L.nnz, (long long) L.nnz,
(double) sum, t_cand, t_res, t_nrm, t_selectadd, t_add,
t_transpose1, t_sweep1, t_selectrm, t_rm, t_sweep2,
t_transpose2, t_total, accum);
fflush(stdout);
}
}
if (timing == 1) {
printf("]; \n");
fflush(stdout);
}
//##########################################################################
CHECK(magma_dmtransfer(L, &precond->L, Magma_CPU, Magma_DEV , queue));
CHECK(magma_d_cucsrtranspose(precond->L, &precond->U, queue));
CHECK(magma_dmtransfer(precond->L, &precond->M, Magma_DEV, Magma_DEV,
queue));
if (precond->trisolver == 0 || precond->trisolver == Magma_CUSOLVE) {
CHECK(magma_dcumicgeneratesolverinfo(precond, queue));
} else {
//prepare for iterative solves
// extract the diagonal of L into precond->d
CHECK(magma_djacobisetup_diagscal(precond->L, &precond->d, queue));
CHECK(magma_dvinit(&precond->work1, Magma_DEV, hA.num_rows, 1,
MAGMA_D_ZERO, queue));
// extract the diagonal of U into precond->d2
CHECK(magma_djacobisetup_diagscal(precond->U, &precond->d2, queue));
CHECK(magma_dvinit(&precond->work2, Magma_DEV, hA.num_rows, 1,
MAGMA_D_ZERO, queue));
}
cleanup:
magma_dmfree(&hA, queue);
magma_dmfree(&L0, queue);
magma_dmfree(&hL, queue);
magma_dmfree(&oneL, queue);
magma_dmfree(&L, queue);
magma_dmfree(<, queue);
magma_dmfree(&L_new, queue);
#endif
return info;
}
|