1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@generated from sparse/src/zbicgstab_merge2.cpp, normal z -> s, Wed Jan 22 14:42:35 2025
@author Hartwig Anzt
*/
#include "magmasparse_internal.h"
#define RTOLERANCE lapackf77_slamch( "E" )
#define ATOLERANCE lapackf77_slamch( "E" )
#define q(i) (q.dval + (i)*dofs)
/**
Purpose
-------
Solves a system of linear equations
A * X = B
where A is a general matrix.
This is a GPU implementation of the Biconjugate Gradient Stabilized method.
The difference to magma_sbicgstab is that we use specifically designed kernels
merging multiple operations into one kernel.
Arguments
---------
@param[in]
A magma_s_matrix
input matrix A
@param[in]
b magma_s_matrix
RHS b
@param[in,out]
x magma_s_matrix*
solution approximation
@param[in,out]
solver_par magma_s_solver_par*
solver parameters
@param[in]
queue magma_queue_t
Queue to execute in.
@ingroup magmasparse_sgesv
********************************************************************/
extern "C" magma_int_t
magma_sbicgstab_merge2(
magma_s_matrix A, magma_s_matrix b,
magma_s_matrix *x, magma_s_solver_par *solver_par,
magma_queue_t queue )
{
magma_int_t info = MAGMA_NOTCONVERGED;
// prepare solver feedback
solver_par->solver = Magma_BICGSTABMERGE2;
solver_par->numiter = 0;
solver_par->spmv_count = 0;
// solver variables
float alpha, beta, omega, rho_old, rho_new, *skp_h={0};
float nom, nom0, betanom, nomb;
//float den;
// some useful variables
float c_zero = MAGMA_S_ZERO, c_one = MAGMA_S_ONE;
magma_int_t dofs = A.num_rows;
// workspace
magma_s_matrix q={Magma_CSR}, r={Magma_CSR}, rr={Magma_CSR}, p={Magma_CSR}, v={Magma_CSR}, s={Magma_CSR}, t={Magma_CSR};
float *d1=NULL, *d2=NULL, *skp=NULL;
d1 = NULL;
d2 = NULL;
skp = NULL;
CHECK( magma_smalloc( &d1, dofs*(2) ));
CHECK( magma_smalloc( &d2, dofs*(2) ));
// array for the parameters
CHECK( magma_smalloc( &skp, 8 ));
// skp = [alpha|beta|omega|rho_old|rho|nom|tmp1|tmp2]
CHECK( magma_svinit( &q, Magma_DEV, dofs*6, 1, c_zero, queue ));
// q = rr|r|p|v|s|t
rr.memory_location = Magma_DEV; rr.dval = NULL; rr.num_rows = rr.nnz = dofs;
r.memory_location = Magma_DEV; r.dval = NULL; r.num_rows = r.nnz = dofs;
p.memory_location = Magma_DEV; p.dval = NULL; p.num_rows = p.nnz = dofs;
v.memory_location = Magma_DEV; v.dval = NULL; v.num_rows = v.nnz = dofs;
s.memory_location = Magma_DEV; s.dval = NULL; s.num_rows = s.nnz = dofs;
t.memory_location = Magma_DEV; t.dval = NULL; t.num_rows = t.nnz = dofs;
rr.dval = q(0);
r.dval = q(1);
p.dval = q(2);
v.dval = q(3);
s.dval = q(4);
t.dval = q(5);
// solver setup
magma_sscal( dofs, c_zero, x->dval, 1, queue ); // x = 0
CHECK( magma_sresidualvec( A, b, *x, &r, &nom0, queue));
magma_scopy( dofs, r.dval, 1, q(0), 1, queue ); // rr = r
magma_scopy( dofs, r.dval, 1, q(1), 1, queue ); // q = r
betanom = nom0;
nom = nom0*nom0;
rho_new = magma_sdot( dofs, r.dval, 1, r.dval, 1, queue ); // rho=<rr,r>
rho_old = omega = alpha = MAGMA_S_MAKE( 1.0, 0. );
beta = rho_new;
solver_par->init_res = nom0;
// array on host for the parameters
CHECK( magma_smalloc_cpu( &skp_h, 8 ));
skp_h[0]=alpha;
skp_h[1]=beta;
skp_h[2]=omega;
skp_h[3]=rho_old;
skp_h[4]=rho_new;
skp_h[5]=MAGMA_S_MAKE(nom, 0.0);
magma_ssetvector( 8, skp_h, 1, skp, 1, queue );
solver_par->final_res = solver_par->init_res;
solver_par->iter_res = solver_par->init_res;
if ( solver_par->verbose > 0 ) {
solver_par->res_vec[0] = nom0;
solver_par->timing[0] = 0.0;
}
nomb = magma_snrm2( dofs, b.dval, 1, queue );
if( nom0 < solver_par->atol ||
nom0/nomb < solver_par->rtol ){
info = MAGMA_SUCCESS;
goto cleanup;
}
CHECK( magma_s_spmv( c_one, A, r, c_zero, v, queue )); // z = A r
//Chronometry
real_Double_t tempo1, tempo2;
tempo1 = magma_sync_wtime( queue );
solver_par->numiter = 0;
solver_par->spmv_count = 0;
// start iteration
do
{
solver_par->numiter++;
// computes p=r+beta*(p-omega*v)
CHECK( magma_sbicgmerge1( dofs, skp, v.dval, r.dval, p.dval, queue ));
CHECK( magma_sbicgmerge_spmv1( A, d1, d2, q(2), q(0), q(3), skp, queue ));
solver_par->spmv_count++;
CHECK( magma_sbicgmerge2( dofs, skp, r.dval, v.dval, s.dval, queue )); // s=r-alpha*v
CHECK( magma_sbicgmerge_spmv2( A, d1, d2, q(4), q(5), skp, queue ));
solver_par->spmv_count++;
CHECK( magma_sbicgmerge_xrbeta( dofs, d1, d2, q(0), q(1), q(2),
q(4), q(5), x->dval, skp, queue ));
// check stopping criterion (asynchronous copy)
magma_sgetvector( 1 , skp+5, 1, skp_h+5, 1, queue );
betanom = sqrt(MAGMA_S_REAL(skp_h[5]));
if ( solver_par->verbose > 0 ) {
tempo2 = magma_sync_wtime( queue );
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) betanom;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
if ( betanom < solver_par->atol ||
betanom/nomb < solver_par->rtol ) {
break;
}
}
while ( solver_par->numiter+1 <= solver_par->maxiter );
tempo2 = magma_sync_wtime( queue );
solver_par->runtime = (real_Double_t) tempo2-tempo1;
float residual;
CHECK( magma_sresidual( A, b, *x, &residual, NULL ));
solver_par->iter_res = betanom;
solver_par->final_res = residual;
if ( solver_par->numiter < solver_par->maxiter ) {
info = MAGMA_SUCCESS;
} else if ( solver_par->init_res > solver_par->final_res ) {
if ( solver_par->verbose > 0 ) {
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) betanom;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
info = MAGMA_SLOW_CONVERGENCE;
if( solver_par->iter_res < solver_par->atol ||
solver_par->iter_res/solver_par->init_res < solver_par->rtol ){
info = MAGMA_SUCCESS;
}
}
else {
if ( solver_par->verbose > 0 ) {
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) betanom;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
info = MAGMA_DIVERGENCE;
}
cleanup:
magma_smfree(&q, queue ); // frees all vectors
magma_free(d1);
magma_free(d2);
magma_free( skp );
magma_free_cpu( skp_h );
solver_par->info = info;
return info;
} /* sbicgstab_merge2 */
|