1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@precisions normal z -> s d c
@author Hartwig Anzt
*/
#include "magmasparse_internal.h"
#define RTOLERANCE lapackf77_dlamch( "E" )
#define ATOLERANCE lapackf77_dlamch( "E" )
/**
Purpose
-------
Solves a system of linear equations
A * X = B
where A is a general matrix.
This is a GPU implementation of the preconditioned Biconjugate Gradient method.
Arguments
---------
@param[in]
A magma_z_matrix
input matrix A
@param[in]
b magma_z_matrix
RHS b
@param[in,out]
x magma_z_matrix*
solution approximation
@param[in,out]
solver_par magma_z_solver_par*
solver parameters
@param[in,out]
precond_par magma_z_preconditioner*
preconditioner
@param[in]
queue magma_queue_t
Queue to execute in.
@ingroup magmasparse_zgesv
********************************************************************/
extern "C" magma_int_t
magma_zpbicg(
magma_z_matrix A, magma_z_matrix b, magma_z_matrix *x,
magma_z_solver_par *solver_par,
magma_z_preconditioner *precond_par,
magma_queue_t queue )
{
magma_int_t info = MAGMA_NOTCONVERGED;
// prepare solver feedback
solver_par->solver = Magma_PBICG;
solver_par->numiter = 0;
solver_par->spmv_count = 0;
// some useful variables
magmaDoubleComplex c_zero = MAGMA_Z_ZERO;
magmaDoubleComplex c_one = MAGMA_Z_ONE;
magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE;
magma_int_t dofs = A.num_rows * b.num_cols;
// workspace
magma_z_matrix r={Magma_CSR}, rt={Magma_CSR}, p={Magma_CSR}, pt={Magma_CSR},
z={Magma_CSR}, zt={Magma_CSR}, q={Magma_CSR}, y={Magma_CSR},
yt={Magma_CSR}, qt={Magma_CSR};
// need to transpose the matrix
magma_z_matrix AT={Magma_CSR};
CHECK( magma_zvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &pt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &qt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &yt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
CHECK( magma_zvinit( &zt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
// solver variables
magmaDoubleComplex alpha, rho, beta, rho_new, ptq;
double res, nomb, nom0, r0;
// transpose the matrix
magma_zmtransposeconjugate( A, &AT, queue );
// solver setup
CHECK( magma_zresidualvec( A, b, *x, &r, &nom0, queue));
res = nom0;
solver_par->init_res = nom0;
magma_zcopy( dofs, r.dval, 1, rt.dval, 1, queue ); // rr = r
rho_new = magma_zdotc( dofs, rt.dval, 1, r.dval, 1, queue ); // rho=<rr,r>
rho = alpha = MAGMA_Z_MAKE( 1.0, 0. );
nomb = magma_dznrm2( dofs, b.dval, 1, queue );
if ( nomb == 0.0 ){
nomb=1.0;
}
if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
r0 = ATOLERANCE;
}
solver_par->final_res = solver_par->init_res;
solver_par->iter_res = solver_par->init_res;
if ( solver_par->verbose > 0 ) {
solver_par->res_vec[0] = nom0;
solver_par->timing[0] = 0.0;
}
if ( nom0 < r0 ) {
info = MAGMA_SUCCESS;
goto cleanup;
}
//Chronometry
real_Double_t tempo1, tempo2;
tempo1 = magma_sync_wtime( queue );
solver_par->numiter = 0;
solver_par->spmv_count = 0;
// start iteration
do
{
solver_par->numiter++;
CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, r, &y, precond_par, queue ));
CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, y, &z, precond_par, queue ));
CHECK( magma_z_applyprecond_right( MagmaTrans, A, rt, &yt, precond_par, queue ));
CHECK( magma_z_applyprecond_left( MagmaTrans, A, yt, &zt, precond_par, queue ));
//magma_zcopy( dofs, r.dval, 1 , y.dval, 1, queue ); // y=r
//magma_zcopy( dofs, y.dval, 1 , z.dval, 1, queue ); // z=y
//magma_zcopy( dofs, rt.dval, 1 , yt.dval, 1, queue ); // yt=rt
//magma_zcopy( dofs, yt.dval, 1 , zt.dval, 1, queue ); // yt=rt
rho= rho_new;
rho_new = magma_zdotc( dofs, rt.dval, 1, z.dval, 1, queue ); // rho=<rt,z>
if( magma_z_isnan_inf( rho_new ) ){
info = MAGMA_DIVERGENCE;
break;
}
if( solver_par->numiter==1 ){
magma_zcopy( dofs, z.dval, 1 , p.dval, 1, queue ); // yt=rt
magma_zcopy( dofs, zt.dval, 1 , pt.dval, 1, queue ); // zt=yt
} else {
beta = rho_new/rho;
magma_zscal( dofs, beta, p.dval, 1, queue ); // p = beta*p
magma_zaxpy( dofs, c_one , z.dval, 1 , p.dval, 1, queue ); // p = z+beta*p
magma_zscal( dofs, MAGMA_Z_CONJ(beta), pt.dval, 1, queue ); // pt = beta*pt
magma_zaxpy( dofs, c_one , zt.dval, 1 , pt.dval, 1, queue ); // pt = zt+beta*pt
}
CHECK( magma_z_spmv( c_one, A, p, c_zero, q, queue )); // v = Ap
CHECK( magma_z_spmv( c_one, AT, pt, c_zero, qt, queue )); // v = Ap
solver_par->spmv_count++;
solver_par->spmv_count++;
ptq = magma_zdotc( dofs, pt.dval, 1, q.dval, 1, queue );
alpha = rho_new /ptq;
magma_zaxpy( dofs, alpha, p.dval, 1 , x->dval, 1, queue ); // x=x+alpha*p
magma_zaxpy( dofs, c_neg_one * alpha, q.dval, 1 , r.dval, 1, queue ); // r=r+alpha*q
magma_zaxpy( dofs, c_neg_one * MAGMA_Z_CONJ(alpha), qt.dval, 1 , rt.dval, 1, queue ); // r=r+alpha*q
res = magma_dznrm2( dofs, r.dval, 1, queue );
if ( solver_par->verbose > 0 ) {
tempo2 = magma_sync_wtime( queue );
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) res;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
break;
}
}
while ( solver_par->numiter+1 <= solver_par->maxiter );
tempo2 = magma_sync_wtime( queue );
solver_par->runtime = (real_Double_t) tempo2-tempo1;
double residual;
CHECK( magma_zresidualvec( A, b, *x, &r, &residual, queue));
solver_par->iter_res = res;
solver_par->final_res = residual;
if ( solver_par->numiter < solver_par->maxiter ) {
info = MAGMA_SUCCESS;
} else if ( solver_par->init_res > solver_par->final_res ) {
if ( solver_par->verbose > 0 ) {
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) res;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
info = MAGMA_SLOW_CONVERGENCE;
if( solver_par->iter_res < solver_par->rtol*nomb ||
solver_par->iter_res < solver_par->atol ) {
info = MAGMA_SUCCESS;
}
}
else {
if ( solver_par->verbose > 0 ) {
if ( (solver_par->numiter)%solver_par->verbose==0 ) {
solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) res;
solver_par->timing[(solver_par->numiter)/solver_par->verbose]
= (real_Double_t) tempo2-tempo1;
}
}
info = MAGMA_DIVERGENCE;
}
cleanup:
magma_zmfree(&r, queue );
magma_zmfree(&rt, queue );
magma_zmfree(&p, queue );
magma_zmfree(&pt, queue );
magma_zmfree(&q, queue );
magma_zmfree(&qt, queue );
magma_zmfree(&y, queue );
magma_zmfree(&yt, queue );
magma_zmfree(&z, queue );
magma_zmfree(&zt, queue );
magma_zmfree(&AT, queue );
solver_par->info = info;
return info;
} /* magma_zpbicg */
|