1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
-- MAGMA (version 2.9.0) --
Univ. of Tennessee, Knoxville
Univ. of California, Berkeley
Univ. of Colorado, Denver
@date January 2025
@author Ahmad Abdelfattah
@author Mark Gates
@author Stan Tomov
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#if defined(MAGMA_HAVE_CUDA)
#include <cuda_fp16.h>
#elif defined(MAGMA_HAVE_HIP)
#include <hip/hip_fp16.h>
#endif
// includes, project
#include "flops.h"
#include "magma_v2.h"
#include "magma_lapack.h"
#include "magma_operators.h"
#include "testings.h"
#if CUDA_VERSION < 9020 || defined(MAGMA_HAVE_HIP)
// conversion float to half are not defined for host in CUDA version <9.2
// thus uses the conversion below when CUDA VERSION is < 9.2.
#include <string.h>
//
// Copyright (c) 1993-2016, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This code modified from the public domain code here:
// https://gist.github.com/rygorous/2156668
// The URL above includes more robust conversion routines
// that handle Inf and NaN correctly.
//
// It is recommended to use the more robust versions in production code.
typedef unsigned uint;
union FP32
{
uint u;
float f;
struct
{
uint Mantissa : 23;
uint Exponent : 8;
uint Sign : 1;
};
};
union FP16
{
unsigned short u;
struct
{
uint Mantissa : 10;
uint Exponent : 5;
uint Sign : 1;
};
};
// Approximate solution. This is faster but converts some sNaNs to
// infinity and doesn't round correctly. Handle with care.
// Approximate solution. This is faster but converts some sNaNs to
// infinity and doesn't round correctly. Handle with care.
static magmaHalf approx_float_to_half(float fl)
{
FP32 f32infty = { 255 << 23 };
FP32 f16max = { (127 + 16) << 23 };
FP32 magic = { 15 << 23 };
FP32 expinf = { (255 ^ 31) << 23 };
uint sign_mask = 0x80000000u;
FP16 o = { 0 };
FP32 f = *((FP32*)&fl);
uint sign = f.u & sign_mask;
f.u ^= sign;
if (!(f.f < f32infty.u)) // Inf or NaN
o.u = f.u ^ expinf.u;
else
{
if (f.f > f16max.f) f.f = f16max.f;
f.f *= magic.f;
}
o.u = f.u >> 13; // Take the mantissa bits
o.u |= sign >> 16;
magmaHalf tmp;
memcpy(&tmp, &o, sizeof(magmaHalf));
//return *((half*)&o);
return tmp;
}
// from half->float code - just for verification.
static float half_to_float(magmaHalf hf)
{
FP16 h;
memcpy(&h, &hf, sizeof(magmaHalf));
static const FP32 magic = { 113 << 23 };
static const uint shifted_exp = 0x7c00 << 13; // exponent mask after shift
FP32 o;
o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits
uint exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
else if (exp == 0) // Zero/Denormal?
{
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.u & 0x8000) << 16; // sign bit
return o.f;
}
#endif
/* ////////////////////////////////////////////////////////////////////////////
(1) converts a matrix from float to half on the GPU
(2) convert back to float and sent it to the CPU to compute the correct norm
*/
void preprocess_matrix(
magma_int_t M, magma_int_t N,
float *hA, magma_int_t lda,
magmaHalf *dA, magma_int_t ldda,
magma_queue_t queue )
{
float *dwork;
magma_int_t info = 0;
TESTING_CHECK( magma_smalloc(&dwork, lda*N) ); // alloc. dwork on GPU
magma_ssetmatrix(M, N, hA, lda, dwork, lda, queue); // send to the GPU
magmablas_slag2h(M, N, dwork, lda, dA, ldda, &info, queue); // convert: s -> h
if(info != 0)printf("preprocess_matrix: error at slag2h\n"); // check
magmablas_hlag2s(M, N, dA, ldda, dwork, lda, queue ); // convert back: h -> hc
magma_sgetmatrix(M, N, dwork, lda, hA, lda, queue); // send to the CPU after conversion
// free workspace
magma_free( dwork );
}
/* ////////////////////////////////////////////////////////////////////////////
(1) converts a matrix from half to float on the GPU
(2) send the converted matrix to the CPU
*/
void postprocess_matrix(
magma_int_t M, magma_int_t N,
magmaHalf *dA, magma_int_t ldda,
float *hA, magma_int_t lda,
magma_queue_t queue )
{
float *dwork;
TESTING_CHECK( magma_smalloc(&dwork, lda*N) );
magmablas_hlag2s(M, N, dA, ldda, dwork, lda, queue ); // convert h -> s
magma_sgetmatrix(M, N, dwork, lda, hA, lda, queue); // send to CPU
magma_free( dwork );
}
/* ////////////////////////////////////////////////////////////////////////////
-- Testing sgemm
*/
int main( int argc, char** argv)
{
TESTING_CHECK( magma_init() );
magma_print_environment();
real_Double_t gflops, dev_perf, dev_time;
float dev_error, work[1];
magma_int_t M, N, K;
magma_int_t Am, An, Bm, Bn;
magma_int_t sizeA, sizeB, sizeC;
magma_int_t lda, ldb, ldc, ldda, lddb, lddc;
magma_int_t ione = 1;
magma_int_t ISEED[4] = {0,0,0,1};
int status = 0;
float *hA, *hB, *hC, *hCdev;
magmaHalf_ptr dA, dB, dC;
float *dCf;
float c_neg_one = MAGMA_S_NEG_ONE;
float alpha = MAGMA_S_MAKE( 0.29, -0.86 );
float beta = MAGMA_S_MAKE( -0.48, 0.38 );
#if CUDA_VERSION >= 9020
const magmaHalf h_alpha = (magmaHalf) alpha;
const magmaHalf h_beta = (magmaHalf) beta;
#else
const magmaHalf h_alpha = approx_float_to_half(alpha);
const magmaHalf h_beta = approx_float_to_half(beta);
#endif
magma_opts opts;
opts.parse_opts( argc, argv );
// Allow 3*eps; real needs 2*sqrt(2) factor; see Higham, 2002, sec. 3.6.
// For half precision, there is no lapackf77_hlamch, please visit:
// https://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
float eps = (float)(0.00097656);
float tol = 3*eps;
printf("%% If running with option --lapack (-l) or with checking (-c), GPU error is computed\n"
"%% relative to CPU BLAS result in single precision.\n\n");
printf("%% transA = %s, transB = %s\n",
lapack_trans_const(opts.transA),
lapack_trans_const(opts.transB) );
printf("%% M N K GPU Gflop/s (ms) GPU error\n");
printf("%%========================================================================================================\n");
for( int itest = 0; itest < opts.ntest; ++itest ) {
for( int iter = 0; iter < opts.niter; ++iter ) {
M = opts.msize[itest];
N = opts.nsize[itest];
K = opts.ksize[itest];
gflops = FLOPS_SGEMM( M, N, K ) / 1e9;
if ( opts.transA == MagmaNoTrans ) {
lda = Am = M;
An = K;
} else {
lda = Am = K;
An = M;
}
if ( opts.transB == MagmaNoTrans ) {
ldb = Bm = K;
Bn = N;
} else {
ldb = Bm = N;
Bn = K;
}
ldc = M;
ldda = magma_roundup( lda, opts.align ); // multiple of 32 by default
lddb = magma_roundup( ldb, opts.align ); // multiple of 32 by default
lddc = magma_roundup( ldc, opts.align ); // multiple of 32 by default
sizeA = lda*An;
sizeB = ldb*Bn;
sizeC = ldc*N;
TESTING_CHECK( magma_smalloc_cpu( &hA, lda*An ));
TESTING_CHECK( magma_smalloc_cpu( &hB, ldb*Bn ));
TESTING_CHECK( magma_smalloc_cpu( &hC, ldc*N ));
TESTING_CHECK( magma_smalloc_cpu( &hCdev, ldc*N ));
TESTING_CHECK( magma_malloc( (void**)&dA, ldda*An*sizeof(magmaHalf) ));
TESTING_CHECK( magma_malloc( (void**)&dB, lddb*Bn*sizeof(magmaHalf) ));
TESTING_CHECK( magma_malloc( (void**)&dC, lddc*N *sizeof(magmaHalf) ));
TESTING_CHECK( magma_malloc( (void**)&dCf, lddc*N *sizeof(float) ));
/* Initialize the matrices */
lapackf77_slarnv( &ione, ISEED, &sizeA, hA );
lapackf77_slarnv( &ione, ISEED, &sizeB, hB );
lapackf77_slarnv( &ione, ISEED, &sizeC, hC );
/* Convert the matrices to half precision */
preprocess_matrix( Am, An, hA, lda, dA, ldda, opts.queue );
preprocess_matrix( Bm, Bn, hB, ldb, dB, lddb, opts.queue );
preprocess_matrix( M, N, hC, ldc, dC, lddc, opts.queue );
magma_ssetmatrix(M, N, hC, ldc, dCf, ldc, opts.queue);
// for error checks
float Anorm = lapackf77_slange( "F", &Am, &An, hA, &lda, work );
float Bnorm = lapackf77_slange( "F", &Bm, &Bn, hB, &ldb, work );
float Cnorm = lapackf77_slange( "F", &M, &N, hC, &ldc, work );
/* =====================================================================
Performs operation using GPU
=================================================================== */
magma_flush_cache( opts.cache );
dev_time = magma_sync_wtime( opts.queue );
if (opts.version == 1) {
magma_hgemm( opts.transA, opts.transB, M, N, K,
h_alpha, dA, ldda,
dB, lddb,
h_beta, dC, lddc,
opts.queue );
dev_time = magma_sync_wtime( opts.queue ) - dev_time;
dev_perf = gflops / dev_time;
postprocess_matrix( M, N, dC, lddc, hCdev, ldc, opts.queue );
}
else {
magma_hgemmx(opts.transA, opts.transB, M, N, K,
alpha, dA, ldda,
dB, lddb,
beta, dCf, lddc,
opts.queue );
dev_time = magma_sync_wtime( opts.queue ) - dev_time;
dev_perf = gflops / dev_time;
magma_sgetmatrix(M, N, dCf, lddc, hCdev, ldc, opts.queue);
}
/* =====================================================================
Check the result
=================================================================== */
if ( opts.lapack || opts.check ) {
/* =====================================================================
Performs operation using CPU BLAS
=================================================================== */
blasf77_sgemm( lapack_trans_const(opts.transA), lapack_trans_const(opts.transB), &M, &N, &K,
&alpha, hA, &lda,
hB, &ldb,
&beta, hC, &ldc );
// Compute forward error bound (see Higham, 2002, sec. 3.5),
// modified to include alpha, beta, and input C.
// ||R_magma - R_ref||_p / (gamma_{K+2} |alpha| ||A||_p ||B||_p + 2 |beta| ||C||_p ) < eps/2.
// This should work with p = 1, inf, fro, but numerical tests
// show p = 1, inf are very spiky and sometimes exceed eps.
// We use gamma_n = sqrt(n)*u instead of n*u/(1-n*u), since the
// former accurately represents statistical average rounding.
// We allow a slightly looser tolerance.
// use LAPACK for R_ref
blasf77_saxpy( &sizeC, &c_neg_one, hC, &ione, hCdev, &ione );
dev_error = lapackf77_slange( "F", &M, &N, hCdev, &ldc, work )
/ (sqrt(float(K+2))*fabs(alpha)*Anorm*Bnorm + 2*fabs(beta)*Cnorm);
bool okay = (dev_error < tol);
status += ! okay;
printf("%5lld %5lld %5lld %7.0f (%7.2f) %8.2e %s\n",
(long long) M, (long long) N, (long long) K,
dev_perf, 1000.*dev_time,
dev_error,
(okay ? "ok" : "failed"));
}
else {
printf("%5lld %5lld %5lld %7.0f (%7.2f) ---\n",
(long long) M, (long long) N, (long long) K,
dev_perf, 1000.*dev_time );
}
magma_free_cpu( hA );
magma_free_cpu( hB );
magma_free_cpu( hC );
magma_free_cpu( hCdev );
magma_free( dA );
magma_free( dB );
magma_free( dC );
magma_free( dCf);
fflush( stdout );
}
if ( opts.niter > 1 ) {
printf( "\n" );
}
}
opts.cleanup();
TESTING_CHECK( magma_finalize() );
return status;
}
|