File: VectorPtr.h

package info (click to toggle)
magnus 20060324-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,404 kB
  • ctags: 20,466
  • sloc: cpp: 130,118; ansic: 37,076; tcl: 10,970; perl: 1,109; makefile: 963; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (533 lines) | stat: -rw-r--r-- 14,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
//   Copyright (C) 1994 The New York Group Theory Cooperative
//   See magnus/doc/COPYRIGHT for the full notice.
 
// Contents: Definition of VectorPtrOf<T> and VectorPtrRep<T> class
//
// Principal Author: Dmitry Pechkin
//
// Status: under trial.
//
// Revision History:
//
// * 96/01/06 @dp Added functions in class VectorPtrOf<T>:
//     T val( int i ) const;
//     T& ref( int i );
//
// * 7/96 Dmitry B. made porting to gcc 2.7.2.
//
// * 3/99 Dmitry B. moved the following implementation to VectorPtr.C 
//   to satisfy new C++ standard:
//
//   VectorItemRef<T> VectorPtrOf<T>::operator [] ( int i );
//
//
// * 03/97 dp fixed VectorPtrRep::shrink(int start, int newlen);
//                  VectorPtrRep( const VectorPtrRep& vr );
//                  bool VectorPtrOf::operator == ( const VectorPtrOf& v ) const;
//
// * 04/97 dp added bool VectorPtrOf<T>::isValid(int) const.
//
// Special Notes:
//
// * These classes are remake of VectorOf<T> and VectorRep<T> classes
//   for one purpose only: class T may not have default constructor.
//   But new implementation is some slow.
//
// * Some problem exists: now on comparison of uninitialized element of
//   VectorPtrOf<T> and element of T error will not occur 
//   (VectorPtrItemRef::operator==() is optimized for this),
//   but if there is global operator==(T,T) error could be occur
//   because in cast operator VectorPtrItemRef::operator T() 
//   method VectorPtr<T>::val(int) is called which caused error
//   if the element is uninitialized. Should be behavoiur
//
// * They aren't derived from VectorOf<> and VectorRep<> because
//   now the last ones require some repairs to fit to general scheme of 
//   derived objects, e.g. like Group hierarchy.
//
// * To instantiate VectorPtrOf<T>, class T must have
//   1) A copy constructor
//   2) An assignment operator
//   3) An == operator
//   4) A destructor
//
// OTHER NOTES FROM Vector.h:
//
// Further implementation steps:
//
// * Analogs of the List methods would be nice.
//
// * Should negative indices count from the end of the vector?
//
// * VectorOf should also have cast constructors from SetOf, ListOf, etc,
//   in order to be able to conveniently use the latter where a VectorOf
//   is expected in a constructor etc.
//
// * Should some compatibility mechanism be installed between things
//   like say VectorOf<Elt> and VectorOf<Word>?
//
// Bugs:
//
// * g++ 2.5.8 and less can't find templates of non-inlined functions
//   so it is necessary to give explicit definitions in Vector.C of
//   every instance.
//
 
#ifndef _VECTOR_PTR_H_
#define _VECTOR_PTR_H_
 

#include <iostream.h>

#include "RefCounter.h"
#include "ObjectOf.h"

//@db porting
template < class T > class VectorItemRef;


template <class T> struct VectorPtrRep : public RefCounter {
  
  public :
  
  // copy constructor does deep copy
  
  VectorPtrRep( const VectorPtrRep& vr ) {
    len = vr.last - vr.first;
    first = 0;
    last = len;
    //@njz
    //    vec = new (T*)[len];
    vec = new T*[len];
    //
#if ( SAFETY > 1 )
    if( !vec )
      error("Cannot allocate memory in VectorPtrRep::VectorPtrRep(const VectorPtrRep& vr)");
#endif
    for( int i = 0; i < len; i++ ) {
      if( vr.vec[vr.first + i] ) {
	vec[i] = new T( *vr.vec[vr.first + i] );
#if ( SAFETY > 1 )
	if( !vec[i] )
	  error("Cannot allocate memory in VectorPtrRep::VectorPtrRep(const VectorPtrRep& vr)");
#endif
      }
      else
	vec[i] = NULL;
    }
    fastExpansion = false;
  }
  
  VectorPtrRep( int l ) {
    len = l;
    first = 0;
    last = len;
    //@njz
    //    vec = new (T*)[len];
    vec = new T*[len];
    //
#if ( SAFETY > 1 )
    if( !vec )
      error("Cannot allocate memory in VectorPtrRep::VectorPtrRep(int)");
#endif
    for(int i = 0; i<len; i++) vec[i] = NULL;
    fastExpansion = false;
  }
  // creates an uninitialized vector of length l
  
  VectorPtrRep( int l, bool e ) {
    len = l;
    first = 0;
    last = len;
    //@njz
    //    vec = new (T*)[len];
    vec = new T*[len];
    //
#if ( SAFETY > 1 )
    if( !vec )
      error("Cannot allocate memory in VectorPtrRep::VectorPtrRep(int, bool)");
#endif
    for(int i = 0; i<len; i++) vec[i] = NULL;
    fastExpansion = e;
  }
  // creates an uninitialized vector of length l

  ~VectorPtrRep( ) { 
    for(int i = 0; i<len; i++)
      delete vec[i];
    delete [] vec;
  }
  
  // standard cloning operation for representations
  
  VectorPtrRep* clone( ) { return new VectorPtrRep( *this ); }

  int length() const { return last - first; }

  bool isValid(int i) const { 
#if ( SAFETY > 0 )
    if ( i < 0 || i >= last - first ) 
      error("VectorPtrOf index out of bounds "
	    "in VectorPtrRep::isValid(int)");
#endif
    return ( vec[first+i] ? true : false );
  }

  void set(int i, const T& t) {
#if ( SAFETY > 0 )
    if ( i < 0 || i >= last - first ) 
      error("VectorPtrOf index out of bounds "
	    "in VectorPtrRep::set(int, const T&)");
#endif
    if (!vec[first+i]){
      delete vec[first+i];
      vec[first+i] = new T(t);
#if ( SAFETY > 1 )
      if( !vec[first+i] )
	error("Cannot allocate memory in VectorPtrRep::set(int,T)");
#endif
    }
    else *vec[first+i] = t;
  }

  // for reference access
  T& ref(int i) {
#if ( SAFETY > 0 )
    if ( i < 0 || i >= last - first ) 
      error("VectorPtrOf index out of bounds in T& VectorRep::ref(int) const");
    if( !isValid(i) )
      error("VectorPtrOf access denied to uninitialized element "
	    "in T& VectorPtrRep::ref(int) const");
#endif
    return *vec[first + i];
  }

  // for value access
  T val(int i) const {
#if ( SAFETY > 0 )
    if ( i < 0 || i >= last - first ) 
      error("VectorPtrOf index out of bounds in T VectorRep::val(int) const");
    if( !isValid(i) )
      error("VectorPtrOf access denied to uninitialized element "
	    "in T VectorPtrRep::val(int) const");
#endif
    return *vec[first + i];
  }

  VectorItemRef<T> operator [] ( int i ) { 
#if ( SAFETY > 0 )
    if ( i < 0 || i >= length() ) 
      error("VectorPtrOf index out of bounds in VectorRep::operator [](int)");
#endif
    if( isValid(i) )
      return VectorItemRef<T>(vec[i]);
    else
      return VectorItemRef<T>(&vec[i], 0);
  }

  void append( const T& t ) {
    if ( last < len ) {
      vec[last++] = new T(t);
    }
    else {
      if( fastExpansion && len ) len *= 2; else len++;
      //@njz
      //      T** new_vec = new (T *)[len];
      T** new_vec = new T*[len];
      //
 #if ( SAFETY > 1 )
      if( !new_vec )
	error("Cannot allocate memory in VectorPtrRep::append(T)");
#endif
     int j = 0;
      for( int i = first; i < last; i++ )
	new_vec[j++] = vec[i];
      delete [] vec;
      vec = new_vec;
      vec[j++] = new T(t);
#if ( SAFETY > 1 )
      if( !vec[j-1] )
	error("Cannot allocate memory in VectorPtrRep::append(T)");
#endif
      last = j;
      first = 0;
      for(int i = last; i<len; i++)
	vec[i] = NULL;
    }
  }

  void prepend( const T& t ) {
    if ( first > 0 ) {
      vec[--first] = new T(t);
    }
    else {
      if( fastExpansion && len ) len *= 2; else len++;
      //@njz
      //      T** new_vec = new (T *)[len];
      T** new_vec = new T*[len];
      //
#if ( SAFETY > 1 )
    if( !new_vec )
      error("Cannot allocate memory in VectorPtrRep::prepend(T)");
#endif
      int j = 0;
      new_vec[j++] = new T(t);
#if ( SAFETY > 1 )
    if( !new_vec[0] )
      error("Cannot allocate memory in VectorPtrRep::prepend(int)");
#endif
      for( int i = first; i < last; i++ )
	new_vec[j++] = vec[i];
      delete [] vec;
      vec = new_vec;
      last = j;
      first = 0;
      for(int i = last; i<len; i++)
	vec[i] = NULL;
    }
  }

  void shrink( int start, int newlen ) {
#if ( SAFETY > 0 )
    if ( start < 0 || first + start >= last || newlen > last - first )
      error("argument to VectorRep::shrink out of bounds");
#endif
    // The semantics are dangerous if we allow shrink to `expand' the VectorPtrOf:
    // a copy construction may throw the `extra' stuff away in between
    // calls to shrink.

    // free all elements of vector which are out of new bounds

    T** tmp;

    T** tmpStart = vec+first+start;
    for(tmp = vec+first; tmp<tmpStart; tmp++) {
      delete *tmp;
      *tmp = NULL;
    }

    T** tmpLast = vec+last;
    for(tmp = tmpStart+newlen; tmp<tmpLast; tmp++) {
      delete *tmp;
      *tmp = NULL;
    }

    first += start;
    last = first + newlen;
  }

  
  private :
  
  // assignment operator undesired : made inaccessible private
  VectorPtrRep& operator = ( const VectorPtrRep& );
  // { }//@rn

  // data members
  
  bool fastExpansion; // true if expansion should be done by doubling space 
  unsigned int first; // index of first valid entry
  unsigned int last;  // index + 1 of last valid entry
  unsigned int len;   // actual length of storage, so last - first <= len
  
  T** vec;
};



template <class T> class VectorPtrOf : public ObjectOf< VectorPtrRep<T> > {
  
  typedef VectorPtrRep< T > Rep;
  typedef ObjectOf< Rep > Base;
  
public:
  
  // copy constructor, operator=, and destructor supplied by compiler.
  
  VectorPtrOf( int len = 0 ) : Base( new Rep(len) ) { }

  VectorPtrOf( int len, bool e ) : Base( new Rep(len,e) ) { }
  // When e is true, the vector length doubles when an append or prepend
  // needs more space (instead of increasing by 1).

  VectorPtrOf( int len, const VectorPtrOf& v ) : Base( new Rep(len) ) {
    for (int i = 0; i < min( len, v.length() ); i++)
      if( v.look()->isValid(i) )
	this->enhance()->set(i, v[i]);
  }
  // to make a vector of given length, (partly) initialized with
  // (part of) another vector

  VectorPtrOf( int len, bool e, const VectorPtrOf& v ) : Base( new Rep(len,e)){
    for (int i = 0; i < min( len, v.length() ); i++) 
      if( v.look()->isValid(i) )
	this->enhance()->set(i, v[i]);
  }
  // See comment for VectorPtrOf( int len, bool e ).

  bool operator == ( const VectorPtrOf& v ) const
  {
    if (this->look() == v.look()) return true;
    if ( this->look()->length() != v.look()->length() ) return false;
    int i = this->look()->length();
    while ( i-- ) 
      if( this->look()->isValid(i) != v.look()->isValid(i) ||
	  this->look()->isValid(i) && !(this->look()->val(i) == v.look()->val(i)) ) 
	return false;
    return true;
  }
  
  bool operator != ( const VectorPtrOf& v ) const { return !(*this == v); }

  T operator [] ( int i ) const { return this->look()->val(i); }

  VectorItemRef<T> operator [] ( int i ) { return this->change()->operator [](i); }

  T val( int i ) const { return this->look()->val(i); }

  T& ref( int i ) { return this->change()->ref(i); }

  bool isValid( int i ) const { return this->look()->isValid(i); }
  
  int length( ) const { return this->look()->length(); }

  int hash() const { return this->look()->length(); }
  //@rn Replace this in specific template instances if you want
  //    any semblance of efficiency.
  
  int indexOf( const T& t ) const {
    int i = length();
    while ( i-- ) 
      if ( this->look()->isValid(i) && this->look()->val(i) == t ) return i;
    return -1;
  }
  // Returns the index of t in this VectorPtrOf, or -1 if not here.
  
  void append( const T& t ) { this->change()->append(t); }
  // Appends t to this VectorPtrOf.
  
  void prepend( const T& t ) { this->change()->prepend(t); }
  // Prepends t to this VectorPtrOf.

  void shrink( int newLength ) { this->change()->shrink(0, newLength); }
  void shrink( int start, int newLength )
  { this->change()->shrink(start, newLength); }

  // I/O :
 
  // @stc these should not be inlined here but its easier than
  // fighting with g++'s template shortcomings
  inline friend ostream& operator << ( ostream& o, const VectorPtrOf& v ) {
 
    o << "<";
    if ( v.length() == 0 )
      o << " ";
    else {
      if( v.isValid(0) )
	o << v[0];
      else
	o << "-?-";
    }
    for ( int i = 1; i < v.length(); i++ ) {
      o << ",";
      if( v.look()->isValid(i) )
	o << v[i];
      else
	o << "-?-"; 
    }
    o << ">";
    return o;
  }
 
private:

};


template < class T > class VectorItemRef {
  
public:
  
  // no default constructor because of reference members
  // destructor compiler-supplied
  
  T& operator = ( const T& t ) { 
    if (elPoint) 
      *elPoint = t;
    else {
      elPoint = *elAddr = new T(t);
#if ( SAFETY > 1 )
      if( !elPoint )
	error("Cannot allocate memory in VectorItemRef::operator=(T&)");
#endif
     
    }
    return *elPoint;
  }

  bool operator == ( const T& t ) { 
    if (elPoint)
      return *elPoint == t; 
    else
      return false;
  }
  // if a global operator == with two T arguments is defined, the above
  // is not necessary; if T only has a member operator == with one T
  // argument, then the above is necessary, since the ARM excludes
  // type conversion to apply a method.
 
  operator T( ) { 
    if (!elPoint)
      error("VectorPtrOf access denied to uninitialized element "
	    "in  VectorItemRef::operator T()");
    return *elPoint;
  }
  
private:

  friend class VectorPtrRep<T>; //@@rn only op[] when possible.

  VectorItemRef( T* p) : elPoint(p) { }
  // Hide this from unauthorized users.

  VectorItemRef( T** addr, T* p) : elPoint(0), elAddr(addr) { }
  // Hide this from unauthorized users.

  // data members


  T* elPoint;
  T** elAddr;

private:

  //@dp old notes: no assignment operator generated by compiler because of ref member.
  //@dp Really, compiler (gcc 2.7.2) generates default operator=(const VectorItemRef&)
  //    like for the structures that is wrong. We need this operator in expressions 
  //    like this:  a[i] = b[i] where b[i] must be initialized.
  VectorItemRef& operator = ( const VectorItemRef& ref );

  // make copy constructor inaccessible

  // @db porting

public: 

  VectorItemRef( const VectorItemRef& ref )
  {
    if( !ref.elPoint ) {
      error("VectorPtrOf<T>: access denied to uninitialized element t"
	    "in  VectorItemRef::operator=(const VectorItemRef& t)");
      
    }
    if( this != &ref ) {
      if( elPoint )
	*elPoint = *ref.elPoint;
      else
	elPoint = *elAddr = new T( *ref.elPoint );
    }
  }

};

#endif