File: SmithNormalForm.h

package info (click to toggle)
magnus 20060324-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,404 kB
  • ctags: 20,466
  • sloc: cpp: 130,118; ansic: 37,076; tcl: 10,970; perl: 1,109; makefile: 963; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (116 lines) | stat: -rw-r--r-- 3,939 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// Copyright (C) 1994 The New York Group Theory Cooperative
// See magnus/doc/COPYRIGHT for the full notice.

// Contents: Definition of the SmithNormalForm utility class.
//           This encapsulates the computation which puts
//           an Integer matrix into diagonal form.
//
// Principal Authors: Sergei Lyutikov, Roger Needham
//
// Status: provisional
//
// Special Remarks:
//
// * The libg++ Integer class uses the basic wrapped pointer scheme,
//   "However, constructors and assignments operate by copying entire
//    representations, not just pointers."
//   This does not impose an unacceptable cost here, since the Integers
//   will not typically be enormous, and objects in this class will not
//   be instantiated very frequently.
//   If these assumptions change, we can replace type Integer with
//   type Integer* in the computations.
//
// Revision History:
//
// * 6/95 Roger adapted this from class Abelianization.
//

#ifndef _SMITH_NORMAL_FORM_H_
#define _SMITH_NORMAL_FORM_H_


#include "ExtendedIPC.h"

#include "Vector.h"


class SmithNormalForm {
public:

  //////////////////////////////////////////////////////////////
  //                                                          //
  // Constructors:                                            //
  //                                                          //
  //////////////////////////////////////////////////////////////

  SmithNormalForm(Integer** theMatrix, int rows, int cols);
  // This reduces theMatrix in place, and deletes it when done.

  /////////////////////////////////////////////////////////////////////////
  //                                                                     //
  // Activation members:                                                 //
  //                                                                     //
  /////////////////////////////////////////////////////////////////////////

  bool continueComputation( );
  // Return true iff the computation is complete.

  /////////////////////////////////////////////////////////////////////////
  //                                                                     //
  // Accessors:                                                          //
  //                                                                     //
  /////////////////////////////////////////////////////////////////////////

  int getTorsionFreeRank( ) const;
  // It is an error to call this unless continueComputation() has returned
  // true.

  VectorOf<Integer> getTorsionInvariants( ) const;
  // It is an error to call this unless continueComputation() has returned
  // true.


private:

  /////////////////////////////////////////////////////////////////////////
  //                                                                     //
  // Data Members:                                                       //
  //                                                                     //
  /////////////////////////////////////////////////////////////////////////

  Integer** matrix;
  // The matrix we are reducing in place

  int height, width;

  // The answer:

  VectorOf<Integer> theInvariants;
  int               rankOfFreePart;

  // Control variables for continueComputation():
  
  int i, j;

  VectorOf<Integer> resultTemp;

  bool done;
  
  /////////////////////////////////////////////////////////////////////////
  //                                                                     //
  // Private methods:                                                    //
  //                                                                     //
  /////////////////////////////////////////////////////////////////////////

  Integer abs( const Integer& a ) const { return ( a > 0 ) ? a : -a; }

  Integer sign( const Integer& a ) const {
	 if ( a == 0 ) return 0;
	 return ( a > 0 ) ? 1 : -1;
  }

  Integer GCD( Integer a, Integer b ) const;

};

#endif