1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
Building new state, numbered 100 while dealing with state 73
New word difference has length 1
Substring closed word difference machine has 110 states.
Word difference machine has 110 states.
Trying to build word acceptor.
Building new state, numbered 100 while finding targets of state 94
Word acceptor has 106 states before minimization,
and 26 afterwards.
Trying to build multipliers.
gpcheckmult returns no. Looping.
Substring closed word difference machine has 140 states.
Pass no. 2 though loop.
Word difference machine has 140 states.
Trying to build word acceptor.
Building new state, numbered 100 while finding targets of state 93
Word acceptor has 107 states before minimization,
and 26 afterwards.
Trying to build multipliers.
gpcheckmult return yes.
Group < a, b ; a b a b a b a b a b a b,b^3,a^2 > is proved weighted lex automatic
with weights <2,2,2,1> and order <1,-1,2,-2>
Minimized word acceptor, with 26 states:-
unnamed_min := rec(
isFSA := true,
alphabet := rec(
type := "identifiers",
size := 4,
format := "dense",
names := [a,a^-1,b,b^-1]
),
states := rec(
type := "simple",
size := 26
),
flags := ["DFA","minimized"],
initial := [1],
accepting := [1..26],
table := rec(
numTransitions := 38,
format := "dense deterministic",
transitions := [[2,0,3,4],
[0,0,5,6],
[7,0,0,0],
[8,0,0,0],
[9,0,0,0],
[10,0,0,0],
[0,0,11,6],
[0,0,11,12],
[0,0,13,6],
[0,0,11,14],
[15,0,0,0],
[16,0,0,0],
[17,0,0,0],
[18,0,0,0],
[0,0,19,6],
[0,0,20,21],
[0,0,0,22],
[0,0,23,19],
[0,0,0,0],
[24,0,0,0],
[19,0,0,0],
[25,0,0,0],
[26,0,0,0],
[0,0,19,12],
[0,0,13,14],
[0,0,19,14]
]
)
);
General multiplier:-
/tmp/KBmagAAAa02813.gm := rec(
isFSA := true,
alphabet := rec(
type := "product",
size := 24,
arity := 2,
padding := _,
base := rec(
type := "identifiers",
size := 4,
format := "dense",
names := [a,a^-1,b,b^-1]
)
),
states := rec(
type := "labeled",
size := 67,
labels := rec(
type := "identifiers",
size := 5,
format := "dense",
names := [a,a^-1,b,b^-1,_]
),
format := "sparse",
setToLabels := [
[1,5],
[2,5],
[5,1],
[7,5],
[8,3],
[9,4],
[11,4],
[12,5],
[13,3],
[14,5],
[15,5],
[19,5],
[23,5],
[24,5],
[25,5],
[29,5],
[33,5],
[34,5],
[35,5],
[39,5],
[43,5],
[44,5],
[45,5],
[52,5],
[59,5],
[60,5],
[61,5],
[62,5],
[65,5],
[66,5],
[67,5]
]
),
flags := ["DFA"],
initial := [1],
accepting := [],
table := rec(
numTransitions := 188,
format := "sparse",
transitions := [[[1,2],[3,3],[4,4],[5,5],[11,6],[13,7],
[14,8],[15,9],[16,10],[18,11],[19,12],[20,13],[21,5],
[23,13],[24,9]],
[[13,14],[14,8],[15,9],[18,11],[19,15],[20,13],
[23,13],[24,9]],
[[16,16]],
[[11,17]],
[],
[[4,18]],
[[1,19],[5,5],[21,5]],
[[1,20]],
[],
[[3,21]],
[[1,22]],
[[1,23],[5,5],[21,5]],
[],
[[1,24],[5,5],[21,5]],
[[1,25],[5,5],[21,5]],
[[3,26]],
[[4,27]],
[[11,28]],
[[13,29],[14,8],[15,9],[18,11],[19,15],[20,13],
[23,13],[24,9]],
[[18,30]],
[[16,31]],
[[14,32]],
[[13,29],[14,8],[15,9],[18,11],[19,33],[20,13],
[23,13],[24,9]],
[[13,34],[14,8],[15,9],[18,11],[19,15],[20,13],
[23,13],[24,9]],
[[13,29],[14,8],[15,9],[18,11],[19,35],[20,13],
[23,13],[24,9]],
[[16,36]],
[[11,37]],
[[4,38]],
[[1,39],[5,5],[21,5]],
[[1,40]],
[[3,41]],
[[1,42]],
[[1,43],[5,5],[21,5]],
[[1,44],[5,5],[21,5]],
[[1,45],[5,5],[21,5]],
[[3,46],[4,47]],
[[3,48],[4,49]],
[[11,50],[16,51]],
[[13,52],[14,13],[15,9],[18,9],[19,15],[20,13],
[23,13],[24,9]],
[[18,53],[19,54]],
[[11,55],[16,56]],
[[14,57],[19,58]],
[[13,59],[14,13],[15,9],[18,9],[19,60],[20,13],
[23,13],[24,9]],
[[19,61],[20,13],[24,9]],
[[13,62],[14,13],[15,9],[18,9],[19,52],[20,13],
[23,13],[24,9]],
[[20,5]],
[[11,16]],
[[16,17]],
[[16,9],[21,13]],
[[24,5]],
[[3,18]],
[],
[[5,46]],
[[1,63]],
[[4,21]],
[[4,13],[5,9]],
[[21,50]],
[[1,64]],
[[1,65],[5,5],[21,5]],
[[1,52],[5,5],[21,5]],
[[1,66],[5,5],[21,5]],
[[1,67],[5,5],[21,5]],
[[13,30]],
[[13,32]],
[[13,52],[14,13],[15,9],[18,9],[19,33],[20,13],
[23,13],[24,9]],
[[13,34],[14,8],[15,9],[18,11],[19,35],[20,13],
[23,13],[24,9]],
[[13,52],[14,13],[15,9],[18,9],[19,35],[20,13],
[23,13],[24,9]]
]
)
);
|