File: FEData.h

package info (click to toggle)
magnus 20060324-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,404 kB
  • ctags: 20,466
  • sloc: cpp: 130,118; ansic: 37,076; tcl: 10,970; perl: 1,109; makefile: 963; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (590 lines) | stat: -rw-r--r-- 17,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
// Copyright (C) 1995 The New York Group Theory Cooperative
// See magnus/doc/COPYRIGHT for the full notice.

// Contents: Declaration of mixin class FEData
//
// Principal Author: Roger Needham
//
// Status: in progress
//
// Revision History:
//


#ifndef _FEDATA_H_
#define _FEDATA_H_


#include <iostream.h>
#include "Chars.h"
#include "OID.h"
#include "ARCSlotID.h"


//   Introduction:
//   ------------
// 
//   The following discussion is addressed to maintainers; users of class
// FEData may wish to skip to the `Usage' section.
// 
//   Overview of Requirements:
//   ------------------------
// 
//   The Magnus Front End (FE) must be able to reflect the state of the
// Session Manager (SM). For modularity, the FE should know as little as
// possible about the SM data it manipulates.
// 
//   Therefore, we predefine a small number of events, in response to
// which the FE is to take some action which reflects the SM's state. The
// SM describes to the FE what to do in each event, via a simple message
// protocol.  The descriptions may refer to elements of a `blind'
// database, which is stored by the FE and kept up to date by the SM.
// 
//   The FE must know nothing about the database except how to store and
// extract data. Programmers in the SM layer should know nothing about
// the database except its semantics in a given event.
// 
//   The classes wrapped in class FEData form the programmer's interface
// between the SM and the database.
// 
//   Terminology:
//   -----------
// 
//   The database is an associative array, where the keys and data can be
// arbitrary strings. Exactly what strings are used is, of course,
// hidden by the FEData classes.
// 
//   A `Key' may be constant or variable. When constant, it typically
// consists of an object id supplied by the programmer, and a key
// descriptor which is hidden from the programmer. When variable, it
// typically consists of the index of a formal variable supplied by the
// programmer, and the key descriptor. The latter allows database
// references to be specified for events in advance, and later evaluated
// in a context in which the formal variables have values. This is
// tricky; see the discussion of menus, below.
// 
//   A `Datum' is the value returned by the database for a given key. It
// is always constant, and is typically a boolean value, an object id, or
// a string such as an object's name.  A Datum is represented only
// conceptually by FEData (i.e., not as a class), since it exists only in
// the FE. The programmer specifies a Datum via a Key.
// 
//   An `Expression' is built up from Keys via operators like `==', `&&',
// and `!'. Thus an Expression may be variable or constant.
// 
//   A `Name' is an Expression which contains another Expression, where
// the latter evaluates to an object id.
// 
//   Events:
//   ------
// 
//   These are the events for which the FE must take action which depends
// on the database:
// 
//   1) There is new data to be stored.
// 
//      The SM must supply a constant Key, and a constant Expression
// (which may be a simple value) to become the Datum. For example, the SM
// may announce that `the parent group of word <object-id> is
// <object-id>'.  The `parent group' part is resolved as a key
// descriptor, the first object id becomes part of the Key, and the
// second object id is the Datum.
// 
//   2) The SM wishes to display textual data.
// 
//      In this case, the SM knows exactly which objects it wants to talk
// about, so it can supply their object id's. SM programmers must be able
// to embed constant Names in text.
// 
//   3) A new workspace object has been created.
// 
//      The view description for the object may contain text which refers
// to various objects by name. These objects are known when the new one
// is created, so the situation is as in 2).
// 
//   4) The workspace selection has changed.
// 
//      <To Appear>
//
//
//   Usage:
//   -----
// 
//      <To Appear>
//


//@rn  This stuff was too quickly hacked, and needs more thought. In
//@rn  particular, the ! operator does not work properly; e.g., the
//@rn  expression ( !  IsAuto(...) ) is spuriously false when there
//@rn  is no `auto' key stored at all in the FE.



//---------------------------------------------------------------------------//
//----------------------------- FEData --------------------------------------//
//---------------------------------------------------------------------------//

class FEData
{
private:

  /////////////////////////////////////////////////////////////////////////
  //                                                                     //
  // Rep Classes:                                                        //
  //                                                                     //
  /////////////////////////////////////////////////////////////////////////
	 
  struct ExpressionRep
  {
	 ExpressionRep( ) : refs( 1 ) { }

	 ExpressionRep* gimme( ) {
		++refs;
		return this;
	 }

	 void getHence( ) {
		if ( ! --refs ) { delete this; }
	 }

	 virtual ~ExpressionRep( ) { }
	 
	 virtual void printOn(ostream& ostr) const = 0;

	 // Data Members:

	 int refs;
  };


  struct KeyRep : public ExpressionRep
  {
	 KeyRep(int i);  // Stupid special case

	 KeyRep(int i, const char* t);

	 KeyRep(OID oid, const char* t);

	 KeyRep(ExpressionRep* se, const char* t);

	 ~KeyRep( ) { if ( subExpression ) subExpression->getHence(); }

	 void printOn(ostream& ostr) const;        // overrides ExpressionRep

	 // Data Members:

	 const int index;
	 const char* text;
	 bool isConstant;
	 ExpressionRep* subExpression;
  };

  
  struct JoinRep : public ExpressionRep
  {
	 JoinRep(ExpressionRep* a1, ExpressionRep* a2, const char* j);

	 ~JoinRep( );
	 
	 void printOn(ostream& ostr) const;         // overrides ExpressionRep

	 // Data Members:

	 ExpressionRep* lhs;
	 ExpressionRep* rhs;
	 const char* junctor;  // Always static data
  };


  struct NotRep : public ExpressionRep
  {
	 NotRep(ExpressionRep* a);

	 ~NotRep( );

	 void printOn(ostream& ostr) const;         // overrides ExpressionRep

	 // Data Members:

	 ExpressionRep* expr;
  };


  struct NameRep : public ExpressionRep
  {
	 NameRep(ExpressionRep* a);

	 ~NameRep( );

	 void printOn(ostream& ostr) const;         // overrides ExpressionRep

	 // Data Members:

	 ExpressionRep* expr;
  };

//@njz
//protected:
public:
//

  //-------------------------------------------------------------------------//
  //---------------------------- Expression ---------------------------------//
  //-------------------------------------------------------------------------//
  
  class Expression
  {
  public:
	 
	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Constructors:                                                       //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////
	 
	 Expression(int i) : theRep( new KeyRep( i ) ) { }
	 // The hackery is getting rather thick; this is a quicky to allow storage
	 // of, e.g., enum values as data.
	 
	 Expression( const Expression& E ) {
		theRep = E.theRep->gimme();
	 }
	 
	 ~Expression( ) { theRep->getHence(); }
 
	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Operators:                                                          //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////
	 
	 Expression operator == ( const Expression& E ) const {
		return join( E, "==" );
	 }

	 Expression operator != ( const Expression& E ) const {
		return join( E, "!=" );
	 }
	 
	 Expression operator && ( const Expression& E ) const {
		return join( E, "&&" );
	 }

	 Expression operator || ( const Expression& E ) const {
		return join( E, "||" );
	 }

	 Expression operator ! ( ) const {
		return Expression( new NotRep( theRep->gimme() ) );
	 }

	 Expression operator > ( const Expression& E ) const {
		return join( E, ">" );
	 }

	 Expression operator >= ( const Expression& E ) const {
		return join( E, ">=" );
	 }

	 Expression operator < ( const Expression& E ) const {
		return join( E, "<" );
	 }

	 Expression operator <= ( const Expression& E ) const {
		return join( E, "<=" );
	 }
	 
	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Output Methods:                                                     //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////
	 
    friend ostream& operator << ( ostream& ostr, const Expression& E);

	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Protected Methods:                                                  //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////
	 
	 Expression( ExpressionRep* rep ) : theRep( rep ) { }
	 // Call this ONLY when rep.refs already has the right value!

	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Data Members:                                                       //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////

	 ExpressionRep* theRep;  // Public on purpose...

	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Private Methods:                                                    //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////

  private:
	 
	 Expression join( const Expression& E, const char* junctor ) const;
	 
  };


  //-------------------------------------------------------------------------//
  //------------------------------- Key -------------------------------------//
  //-------------------------------------------------------------------------//

  class Key : public Expression
  {
  public:

	 /////////////////////////////////////////////////////////////////////////
	 //                                                                     //
	 // Constructors:                                                       //
	 //                                                                     //
	 /////////////////////////////////////////////////////////////////////////

	 Key( const Key& K ) : Expression( K.theRep->gimme() ) { }

	 // Expression's dtor does the job

  protected:

	 Key(int i) : Expression( new KeyRep( i ) ) { }  // Stupid special case

	 Key(int i, const char* t) : Expression( new KeyRep( i, t ) ) { }

	 Key(OID oid, const char* t) : Expression( new KeyRep( oid, t ) ) { }

	 Key(const Key& K, const char* t)
	   : Expression( new KeyRep( K.theRep->gimme(), t ) )
	 { }

  };


  //-------------------------------------------------------------------------//
  //---------------------------- DataPair -----------------------------------//
  //-------------------------------------------------------------------------//

  struct DataPair
  {
	 DataPair( const Key& key, const Expression& datum )
      : theKey( key ), theDatum( datum )
	 { }
	 
	 // These are largely unneeded, but ListOf requires them:

	 bool operator == (const DataPair& dp) const { return false; }
	 DataPair& operator = (const DataPair& dp);
    friend ostream& operator << ( ostream& ostr, const DataPair& dp);

  private:

	 Key theKey;
	 Expression theDatum;
  };


  //-------------------------------------------------------------------------//
  //------------------------------ Text -------------------------------------//
  //-------------------------------------------------------------------------//

  struct Text
  {
         Text(const char* t = "");
         Text(const Expression& E);
    
         //@njz: moved from private to be public
	 Text(const Text&);
         //

	 operator Chars( ) const;
	 Text& operator + (const Text& t);
	 Text& operator + (const Expression& E);
    friend ostream& operator << (ostream& ostr, const Text& t);
  private:

    //@njz: moved to public
    //	 Text(const Text&);
	 // A Text is to be passed only by reference, so this is hidden and
	 // not to be implemented. Also, unnecessary parenthesizing results
	 // in a `passing reference to temp' warning which must not be
	 // ignored.
    //

    //@njz
    //	 ostrstream ostrstr;
         std::ostrstream ostrstr;
    //
  };


  //-------------------------------------------------------------------------//
  //------------------------- Key Derivatives -------------------------------//
  //-------------------------------------------------------------------------//
  
  struct True : public Key
  {
	 True( ) : Key( 1 ) { }
  };


  struct False : public Key
  {
	 False( ) : Key( 0 ) { }
  };


  struct Object : public Key
  {
	 Object(int i) : Key( i, 0 ) { }
	 Object(OID o) : Key( o, 0 ) { }
	 // Semantic pact with KeyRep: text == 0 => not a real key
  };


  struct CheckinType : public Key
  {
	 CheckinType(int i) : Key( i, "checkin_type" ) { }
	 CheckinType(OID o) : Key( o, "checkin_type" ) { }
	 CheckinType(const Key& K) : Key( K, "checkin_type" ) { }
  };
  // Many menus and ARC slots are conditional, based purely on how the
  // selected objects were checked in (e.g., a group checked in as an
  // abelian group, not an FP group which is discovered to be
  // abelian).  Thus, this allows for associating, e.g., an enum
  // (type) value with an object, when and only when it is created,
  // and for subsequently using the value to choose the right menu item.


  // However, some menu items cannot make sense unless some piece of
  // information is known. For example, `Extend <a free group> by <a map>'
  // must not be posted unless the map is known to be an automorphism of
  // the group. Thus, in as few cases as we can get away with (to
  // stave off utter insanity), we dynamically update the FE database
  // with such crucial information when it is discovered. The following
  // provide the interface:
  
  
  struct IsHomo : public Key
  {
	 IsHomo(int i) : Key( i, "homo" ) { }
	 IsHomo(OID o) : Key( o, "homo" ) { }
  };
  
  
  struct IsIso : public Key
  {
	 IsIso(int i) : Key( i, "iso" ) { }
	 IsIso(OID o) : Key( o, "iso" ) { }
  };
  
  
  struct IsAuto : public Key
  {
	 IsAuto(int i) : Key( i, "auto" ) { }
	 IsAuto(OID o) : Key( o, "auto" ) { }
  };


  // The following are for static properties of algebraic objects which
  // are needed to determine whether a menu item, etc., should be posted.

  struct Parent : public Key
  {
	 Parent(int i) : Key( i, "parent" ) { }
	 Parent(OID o) : Key( o, "parent" ) { }
  };

  struct ParentGroup : public Key
  {
	 ParentGroup(int i) : Key( Parent(i), "parent" ) { }
	 ParentGroup(OID o) : Key( Parent(o), "parent" ) { }
  };
  
  struct Domain : public Key
  {
	 Domain(int i) : Key( i, "domain" ) { }
	 Domain(OID o) : Key( o, "domain" ) { }
  };

  
  struct Range : public Key
  {
	 Range(int i) : Key( i, "range" ) { }
	 Range(OID o) : Key( o, "range" ) { }
  };
  

  struct Oid : public Key
  {
	 Oid(int i) : Key( i, "oid" ) { }
	 Oid(OID o) : Key( o, "oid" ) { }
  };


  //-------------------------------------------------------------------------//
  //------------------------------ Name -------------------------------------//
  //-------------------------------------------------------------------------//

  struct Name : public Expression
  {
	 Name(int i);
	 Name(OID o);
	 Name(const Expression& E);
  };


  // ----------------------------- Link ------------------------------------ //

  struct Link : public Text
  {
    Link( const Chars& text, const Chars& problemName,
	  const Chars& fileName, bool isDynamic = false );
  };


  // ------------------------ SubProblemName ------------------------------- //

  struct SubProblemName
  {
    SubProblemName( OID oid, ARCSlotID asi ) 
      : theOid( oid.unwrap() ), theAsi( asi.unwrap() ) 
    { }
    
    friend ostream& operator << ( ostream& ostr, const SubProblemName& n ) {
      ostr << "[get_subProblemName " << n.theOid << " " << n.theAsi << "]";
      return ostr;
    }
 
  private:
    
    int theOid;
    int theAsi;
  };

  // ---------------------------- Banner ----------------------------------- //

  struct Banner
  {
    Banner( OID oid ) 
      : theOid( oid.unwrap() )
    { }
    
    friend ostream& operator << ( ostream& ostr, const Banner& b ) {
      ostr << "[get_viewBanner " << b.theOid << " " << "]";
      return ostr;
    }
 
  private:
    
    int theOid;
  };

};

#endif