1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Copyright (C) 1994 The New York Group Theory Cooperative
// See magnus/doc/COPYRIGHT for the full notice.
// Contents: Definition and implementation of the SubgroupGraph class.
// A SubgroupGraph is a user class for representing
// a finitely generated subgroup of a free group.
// The representation of the subgroup is as a graph, which
// can be used as a finite state automaton accepting words
// in the subgroup.
// There are methods which transmute the graph into a represen-
// tation of a different subgroup; see, e.g., MHallComplete().
//
// Principal Author: Roger Needham
//
// Status: in progress
//
// Revision History:
//
// * 9/94 Roger wrote this new class to wrap C. Miller's original graph code.
//
// * 05/97 Dmitry B. implemented IPC tools.
//
// Bugs:
//
// * SubgroupGraph(int ambientRank, const SetOf<Word>& S)
// can lose if any words in S are not freely reduced.
//
// Special Notes:
//
// * For the sake of efficiency all functions of SubgroupGraphRep work
// only with freely reduced words.
//
// Next implementation steps:
//
#ifndef _SUBGROUPGRAPH_H_
#define _SUBGROUPGRAPH_H_
#include "SubgroupGraphRep.h"
class SubgroupGraph : public ObjectOf<SubgroupGraphRep> {
public:
typedef SubgroupGraphRep::VertexType VertexType;
typedef SubgroupGraphRep::LabelType LabelType;
SubgroupGraph(int ambientRank, const SetOf<Word>& S) :
ObjectOf<SubgroupGraphRep>( new SubgroupGraphRep(ambientRank, S) ) { }
// Construct a subgroup graph from the rank of the ambient free group,
// and the subgroup generators.
SubgroupGraph(int ambientRank, const VectorOf<Word>& V) :
ObjectOf<SubgroupGraphRep>( new SubgroupGraphRep(ambientRank, V) ) { }
// Construct a subgroup graph from the rank of the ambient free group,
// and the subgroup generators.
// Copy constructor, operator=, and destructor supplied by compiler.
int rank( ) const { return look()->rank(); }
// Returns the rank of this subgroup as a free group.
VectorOf<Word> normalizer( ) { return enhance()->normalizer(); }
VectorOf<Word> nielsenBasis( ) const { return enhance()->nielsenBasis(); }
// Returns a Nielsen basis for this subgroup as a free group.
Word nielsenWord(int i) const { return enhance()->nielsenWord(i); }
// Returns an i^th element of the Nielsen basis.
Word inNielsenWords(const Word& w) const {
return enhance()->inNielsenWords(w);
}
// Returns the word `w' written in elements of the Nielsen basis.
SubgroupGraph join(const SubgroupGraph& SG) const {
return SubgroupGraph( look()->join( *(SG.look()) ) );
}
// Returns a SubgroupGraph which represents the join of this
// subgroup and the argument (i.e. the subgroup generated by the
// union of generating sets for the two subgroups).
SubgroupGraph intersection(const SubgroupGraph& SG) const {
return SubgroupGraph( look()->intersection( *(SG.look()) ) );
}
// Returns a SubgroupGraph which represents the intersection of
// this subgroup and the argument.
Bool contains(const Word& w) const { return look()->contains(w); }
// Returns TRUE iff this subgroup contains `w'.
Bool contains(const SetOf<Word>& S) const { return look()->contains(S); }
// Returns TRUE iff this subgroup contains the subgroup generated by `S'.
Bool contains(const VectorOf<Word>& V) const { return look()->contains(V); }
// Returns TRUE iff this subgroup contains the subgroup generated by `V'.
Bool contains(SubgroupGraph& SG) const {
return look()->contains(*SG.change());
}
Bool equalTo(const SetOf<Word>& S) { return enhance()->equalTo(S); }
// Returns TRUE iff this subgroup and the subgroup generated by `S' are equal.
Bool equalTo(SubgroupGraph& SG) {
return enhance()->equalTo(*SG.enhance());
}
// Returns TRUE iff this subgroup and the argument are equal.
Bool conjugateInSubgroup(const Word& w, Word& conjugator) const {
return look()->conjugateInSubgroup(w,conjugator);
}
// Returns TRUE iff some conjugate of `w' is in the subgroup.
// If TRUE, `conjugator' is set to the conjugator.
Bool conjugateInSubgroup(const SetOf<Word>& S, Word& conjugator) {
return enhance()->conjugateInSubgroup(S,conjugator);
}
// Returns TRUE iff some conjugate of the subgroup generated by `S' is
// in the subgroup. If TRUE, `conjugator' is set to the conjugator.
bool conjugateTo(const SetOf<Word>& S) {
return enhance()->conjugateTo(S);
}
// Returns true iff this subgroup and the argument are conjugate.
long powerInSubgroup( const Word& w ) const {
return look()->powerInSubgroup(w);
}
// returns `the minimal power' or 0 if there are no powers of the
// element `aWord' in H.
int findIndex() { return enhance()->findIndex(); }
// Returns the index of the subgroup or 0 if infinite.
VectorOf<Word> findWhiteheadBasis() {
return enhance()->findWhiteheadBasis();
}
// Finds the subgroup of the free group authomorphic to this with
// smallest sum of lengths of generators.
// Returns a vector of generators.
Bool isAFreeFactor() { return enhance()->isAFreeFactor(); }
// Returns TRUE iff this subgroup is a free factor.
Bool generatesTheFreeGroup() const {
return look()->generatesTheFreeGroup();
}
Word rightSchreierRepresentative(const Word& w) {
return enhance()->rightSchreierRepresentative(w);
}
SubgroupGraph MHallCompletion( ) const {
SubgroupGraphRep* copy = new SubgroupGraphRep(*(look()));
copy->MHallComplete();
return SubgroupGraph(copy);
}
// Returns a SubgroupGraph which represents a subgroup of the
// ambient free group of finite index, containing this one.
// This one is a free factor of the result.
void MHallComplete( ) {
change()->MHallComplete();
}
// An `in place' version of above.
void joinConjugate(Generator g) {
change()->joinConjugate( ord(g) );
}
// Alters this SubgroupGraph in place so that it also contains the
// conjugate by `g' of every element it contained before.
float completeness( ) const { return look()->completeness(); }
// Returns ratio of existing edges to number of edges in complete graph.
Bool isComplete( ) const { return look()->isComplete(); }
// Returns TRUE iff this graph is complete (can't trust floats!).
VertexType vertexCount( ) const { return look()->vertexCount(); }
#ifdef DEBUG
void debugPrint(ostream& ostr) const {
look()->debugPrint(ostr);
}
Bool consistentData( ) const {
return look()->consistentData();
}
#endif
VertexType targetOfGenerator(VertexType source, int generator) const {
return look()->targetOfGenerator(source, generator);
}
VertexType targetOfLabel(VertexType source, LabelType label) const {
return look()->targetOfLabel(source, label);
}
long getValence( ) const { return look()->getValence(); }
LabelType inverseLabel(LabelType label) const {
return look()->inverseLabel(label);
}
int labelToGenerator(LabelType label) const {
return look()->labelToGenerator(label);
}
LabelType generatorToLabel(int g) const {
return look()->generatorToLabel(g);
}
/////////////////////////////////////////////////////////////////////////
// //
// IPC tools: //
// //
/////////////////////////////////////////////////////////////////////////
friend ostream& operator < ( ostream& ostr, const SubgroupGraph& g )
{
g.look()->write(ostr);
return ostr;
}
friend istream& operator > ( istream& istr, SubgroupGraph& g )
{
g.change()->read(istr);
return istr;
}
bool readPiece( istream& istr, const class Timer& timer ) {
return change()->readPiece(istr,timer);
}
// To read a big amount of information piece by piece. Returns true
// if the last is read, false otherwise.
//@dbprivate:
protected:
SubgroupGraph(SubgroupGraphRep* SGRp) : ObjectOf<SubgroupGraphRep>(SGRp) { }
};
#endif
|