File: DoesExtendToHomomorphism

package info (click to toggle)
magnus 20060324-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,404 kB
  • ctags: 20,466
  • sloc: cpp: 130,118; ansic: 37,076; tcl: 10,970; perl: 1,109; makefile: 963; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (50 lines) | stat: -rw-r--r-- 918 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// Copyright (C) 1998 The New York Group Theory Cooperative
// See magnus/doc/COPYRIGHT for the full notice.
//
// Principal Author: Dmitry Bormotov
//
// Status: in progress
//
// Revision History:
//


Check-in type:		finitely presented group 

Objects highlighted:	map M 

Other objects present:	group G

Name in the menu:	Does M extend to a homomorphism ?

Problem type:		problem object

Help file:		ExtendToHomProblem.help


			     Algorithms:


1. For the use of this problem
  
2. Compute abelian invariants of G
  
3. Enumerate normal closure of relators
  
4. Seek a rewriting system for G

5. Seek a ShortLex automatic structure for G
	
   Links:
	
	Click here to see a word acceptor.

	Click here to the first difference machine.

	Click here to the second difference machine.

	Click here to the general multiplier.

6. Compute lower central quotients for G
  
7. Solve using lower central quotients of G