File: ExtendToHomomorphism

package info (click to toggle)
magnus 20060324-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,404 kB
  • ctags: 20,466
  • sloc: cpp: 130,118; ansic: 37,076; tcl: 10,970; perl: 1,109; makefile: 963; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (70 lines) | stat: -rw-r--r-- 1,451 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Copyright (C) 1998 The New York Group Theory Cooperative
// See magnus/doc/COPYRIGHT for the full notice.
//
// Principal Author: Dmitry Pechkin
//
// Status: in progress
//
// Revision History:
//


Check-in type:		amalgamated product of free groups

Objects highlighted:	map M

Other objects present:	group G

Name in the menu:	Extend M to a homomorphism

Problem type:		problem object

Help file:		ExtendToHomProblem.help


			Fast checks:


1. If the range group has MSC-property:

   a) If images of the relators of the domain group are not trivial
      in the range group
	return no.

   b) If the domain group is an abelian or a nilpotent group
      and commutators of the generators of the domain group 
      are not trivial in the range group 
	return no.

   c) Return yes.

2. If the range group is one-relator:

   a) If images of the relators of the domain group are not trivial
      in the range group
	return no.

   b) If the domain group is an abelian or a nilpotent group
      and commutators of the generators of the domain group 
      are not trivial in the range group 
	return no.

   c) Return yes.

3. If the domain group is free abelian and the range group is abelian group
	return yes.


			Algorithms:


1. For the use of this problem

2. Compute abelian invariants of G


			Remarks:


// @dp This problem finds the canonical decomposition for G abelianized
//     but does nothing else and remains still working.