File: opt.c

package info (click to toggle)
magnus 20060324-5.1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 19,436 kB
  • ctags: 20,462
  • sloc: cpp: 130,217; ansic: 37,090; tcl: 10,970; perl: 1,109; makefile: 966; sh: 403; yacc: 372; csh: 57; awk: 33; asm: 10
file content (488 lines) | stat: -rw-r--r-- 14,117 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/* file opt.c  */
#include "tcyacc.h"
#include "tc.h"
#include "tcyacc.h"
#include "miscellaneous.h"
#include "ct.h"
#include <string.h>
#define	MST(i,j)	MST_T[i+i+j-3]
tc_mst(tc_pvar)
struct  tc_str_vars     *tc_pvar;
{
/* subroutine to build a minimal spanning tree that is stored in MST[]
*  and set MSTFLG TRUE.
*  the coset table has been renumbered (contains cosets number instead of 
*  their address).
*  cosets in MST are represented by their number instead of their 
*  address in CT.
*/
register Int	i;
register Int	j;
register Int	k;
register Int	col;
register Int	nal;
register Int	thisl;
register Int	nextl;
register Int	kn;
Int	*ct;

	ct = COSET_TABLE;
/* free the space used by previous MST, and allocate space for this
*  MST.
*/
        free(MST_T);
        MST_T = (int *) eemalloc(sizeof(int) * (2 * NALIVE + 2));
/* initialize MST.  */
	for (i = 1; i <= NALIVE; i++) {
		MST(i, 1) = 0;
		MST(i, 2) = 0;
	}
/* construct the minimal spanning tree. root MST(1,1)=-1  */
	MST(1, 1) = -1;
/* nal is the number of the cosets in the tree .
*  thisl is the branch currently being processed.
*  nextl is the number of the previous coset in the tree.
*  kn is the number of the current coset being scanned(in coset table).
*/
	MST_LEVEL = 1;
	for (nal = 1,thisl = 1, nextl = 0; nal <= NALIVE;) {
		kn = thisl;
/* colunm 2 links rows in the order of formation.  */
		thisl = MST(kn,2);
		for (col = 1; col <= NCOL; col++) {
			j = CT(Num2Addr(kn), col);
			if (j < 0)
				break;
/* allow for the case of an incomplete coset table.  */
			if ( j == 0)
				continue;
/* if MST(j,1) is not 0 then coset j is already in the tree. */
			if (MST(j, 1))
				continue;
/* add a new coset in the tree.  */
			MST(j, 1) = kn;
			MST(j, 2) = nextl;
			nextl = j;
			nal++;
		}
/* are all cosets in the tree?  */
		if (nal >= NALIVE)
			break;
/* no, move on to the next know coset in the tree.  */
		if (thisl)
			continue;
		if (nextl <= 0)
			break;
/* move onto the next (level) branch in the tree.  */
		thisl = nextl;
		nextl = 0;	
		MST_LEVEL++;
	}
/* we have finished constructing the tree, fill in the column numbers
*  in column 2. (note that we could have done this already but because
*  of space limitation we haven't.)
*/
	for (i = 2; i <= NALIVE; i++) {
		j = MST(i, 1);
		if (j == 0)
			fprintf(fout,"THERE IS A ZERRO ENTRE IN MST(%d, 1)\n",i);
		else
			for (k = 1; k <= NCOL; k++)
				if (CT(Num2Addr(j), k) == i) {
					MST(i, 2) = k;
					break;
				}
	}
	MSTFLG = TRUE;
}

Int tc_cosrep(coseth, order, tc_pvar)
Int	coseth;
Int	*order;
struct  tc_str_vars     *tc_pvar;
{
register Int    i;
register Int    kn;
register Int    e;
register Int    t;
register Int    rep;
register Int    j;
/* subroutine to find the coset representative of coseth, and store it in 
*  COSREP[] in term of the subscript of group generators in Gen_st[] and in 
*  COSREP_A[] in terms of letters of the group generators and return the
* length of the coset representative.
*  space of COSREP[] has to be allocated before calling this subroutine.
*/
	i = 0;
	if (MSTFLG == FALSE) {
		fprintf(fout,"THERE IS NO MINIMAL SPANNING TREE.\n");
		return i;
	}
/* check if coseth is a valid coset in the coset table. */
	if (coseth > NALIVE || coseth == 1) {
	   fprintf(fout,"THERE IS NO COSET REPRESETATIVE FOR COSET %d\n",coseth);
		return i;
	}
/* produce coset representative for coseth.  */
	rep = coseth;
	for (i = 1; rep > 1; rep = MST(rep, 1),i++) {
		COSREP[i] = MST(rep, 2);	
	}
	i--;
/* now i is the length of the coset rep.
*  reverse COSREP[].  
*/
	for (j = 1, e = i; j <= i / 2; j++,e--) {
		t = COSREP[j];
		COSREP[j] = COSREP[e];
		COSREP[e] = t;
	}
/* find the order of the coset representative. */
	kn = coseth;
	*order = 0;	
	for (j = 1;; j++) {
/* trace out the coset represetative in the coset table once.  */
		kn = tc_tracew(kn, &COSREP[1], &COSREP[i], tc_pvar);
		if (kn > 1) 
			continue;
		if (kn < 1) 
/* we reached an undefined entry in the coset table, let order 0. */
			break;
		else if (kn == 1) {
/* we find the order of the coset, j. */
                        *order = j;
                        break;
                } 
	}
/* convert the representative into the representation of generators.*/
	for (j = 1; j <= i; j++)
		COSREP[j] = COL_TO_GEN[COSREP[j]];
/*   for letter generators, convert cosrep into letters. */
	if (Gen_st[1].gen != '0') 
		for (j = 1; j <= i; j++)
			if (COSREP[j] < 0)
				COSREP_A[j] = toupper(Gen_st[-COSREP[j]].gen);
			else
				COSREP_A[j] = Gen_st[COSREP[j]].gen;
	return i;
}
Int
tc_normal(n, tc_pvar)
Int 	n;
struct  tc_str_vars     *tc_pvar;
{
register Int    subg;
register Int    *beg;
register Int    *end;
/* a coset I is normalizing if in the subgroup H of group G generated by words
*  W1,...,Wp,
*		I Wj = I   j=1,...,p
* if I is normalizing return 1 otherwise 0.
*/
	if (NSGPG == 0) 
		return 0;
	for (subg = 1; subg <= NSGPG; subg++) {
                beg = &SUBGROUP_GEN[SUBG_INDEX[subg]];
                end = beg - 1 + SUBG_LENGTH[subg];
		if (n == tc_tracew(n, beg, end, tc_pvar))	
			continue;
		else
			return 0;
	}
	return 1;
}
Int
tc_tracew(n, beg, end, tc_pvar)
Int 	n;
Int	*beg;
Int	*end;
struct  tc_str_vars     *tc_pvar;
{
register Int ifront;
register Int	*forscan;
register Int	i;
Int	*ct;
/* trace the word starting at *beg ending at *end by coset n, and return
* as answer the coset one ends up at.
*/
	ct = COSET_TABLE;
	ifront = n;
	for(forscan = beg; forscan <= end; forscan++) {
                i = CT(Num2Addr(ifront), *forscan);

                if (i)
                        ifront = i;
                else
			break;
	}
	return i;
}			
tc_rc(coset,stop,desire,tc_pvar)
Int	coset;
Int	stop;
Int 	desire;
struct  tc_str_vars     *tc_pvar;
{
char	*tc_save();
/* this subroutine finds non trival subgroups in the coset table with index a
*  multiple of a desired index 'desire' by repeatedly putting cosets
*  coincident with coset 1 and observing what happens. The first
*  coset to be put coincident with coset 1 is 'coset' and the
*  previous coset to this coset is used if a favourable result
*  doesn't occur and this process is repeated until a favourable
*  result occurs or else we reach coset 1 or coset 'stop'.
*  Note that at the end of this option the original coset table
*  will be current and if we wish to work in the coset table resulting
*  from the final repeated coincidence with a suitable finite index then
*  a CC option will have to be done using the last coset put coincidednt
*  with coset 1.
*  desire==0 means any index. 
*  coset== 0 means NALIVE.
*  stop== 0  means coset 2.
*/

/* if STDCT is TRUE then the coset table was renumbered. we have to
*  unrenumber it.
*/
        if (STDCT)
                tc_unrenumber(tc_pvar);
	MSTFLG = 0;
        tc_compact(tc_pvar);
/* save the current coset table.  */
	strcpy(FILE_NAME, tc_save(tc_pvar));
/* test stop, coset, desire, if any of them are invalid make it default.  */
	if (stop <= 1)
		stop = 2;
	if (coset <= 1 || coset > NALIVE)
		coset = NALIVE;
	if (desire < 0)
		desire = 0;
        MSTFLG = FALSE;
/* initialize varibles for coinc processing.  */
        MSGLVE = 0;
        DED_PT = DED_END;
	for (;;) {
/* do coset coset coincident with coset 1.   */
	tc_coinc(1,Num2Addr(coset),tc_pvar);
	if (INDEX1) {
                tc_text(12, tc_pvar);
                INDEX = TRUE;
/* we got the index 1, restore the coset table, print out the coset.*/
                tc_restore(tc_pvar);
                unlink(FILE_NAME);
/* get a standard coset table.  */
                tc_ctrenumber(tc_pvar);
                tc_mst(tc_pvar); /* construct ms tree. */
                tc_print_ct(-coset,coset,1,tc_pvar);
                return;
        }
	if (INDEX == 0) 
/* resume the enumeration.   */
		tc_todd_coxeter(1, tc_pvar);
/* check if we get the right index?  */
	if (INDEX) {
		if (desire != 0) 
			if ((NALIVE % desire) != 0) {
/* try next coset. */
                                tc_restore(tc_pvar);
                                coset--;
				if (coset == stop) {
                			fprintf(fout,"REACH STOP %d\n", stop);
					unlink(FILE_NAME);
                			return;
        			}
				continue;
			}
/* we got the desire index, restore the coset table, print out the coset.*/
			tc_restore(tc_pvar);
			unlink(FILE_NAME);
/* get a standard coset table.  */
			tc_ctrenumber(tc_pvar);
			tc_mst(tc_pvar); /* construct ms tree. */
			tc_print_ct(-coset,coset,1,tc_pvar);
			return;
	}
	if (coset == stop) {
		fprintf(fout,"REACH STOP %d\n", stop);
		return;
	}
	}
}
tc_normcl(parmtr, tc_pvar)
Int 	parmtr;
struct  tc_str_vars     *tc_pvar;
{
register Int 	conji;
register Int	i;
register Int 	j;
register Int	k;
register Int	thisl;
register Int	coset;
register Int	*beg;
register Int	*begs;
register Int	*end;
register Int 	*ends;
register Int	*ct;
register Int	t;
register Int	ii;
register Int	length;
register Int	subg;
register Int	newsg_len;
register Int    room_in_y;
register Int	n;
register Int	kill;
register Int 	killi;

Rel_stk_type *p, *pp;
/* subroutine to find the normal closure.
*  trace out ((gen i)^-1)*(subgroup generator)*(gen i) and
*  trace out ((gen i)*(subgroup generator)*(gen i)^-1 for all group
*  defining generators i and all subgroup generators, noting whether
*  we get back to coset 1 or not.
*  fixed a bug for working space: when all space is given to the
*  coset table, and it is all used, then when new sgs which are
*  produced by this subroutine arrive, there's no room for them,
*  in this case n cosets, at the end of the coset table, are deleted
*  to make room for new sgs. 3/2/1993
*  free reduce new sgp gens created by NC.   4/2/1993
*/
	ct = COSET_TABLE;
	Newsg = 0;
	for (conji = 1; conji >= -1; conji -= 2) {
	for (i = 1; i <= NDGEN; i++) {
		if (conji > 0)
			k = GEN_TO_COL[i];
		else
			k = GEN_TO_COL[-i];
		thisl = CT(1, k);
		for (subg = 1; subg <= NSGPG; subg++) {
                beg = &SUBGROUP_GEN[SUBG_INDEX[subg]];
                end = beg - 1 + SUBG_LENGTH[subg];
		coset = thisl;
		coset = tc_tracew(coset, beg, end, tc_pvar);
		if (coset == thisl) 
			continue;
		else {
/* output this conjugate. */
			if(Gen_st[1].gen == '0') 
				fprintf(fout," Group generator %d^%d does not normalize subgroup generator No. %d\n", i, conji, subg);
			else 
				fprintf(fout," Group generator %c^%d does not normalize subgroup generator No. %d\n", Gen_st[i].gen, conji, subg);
/* use COSREP[] as a buffer for the conjugate. allocate space for COSREP[]. */
			if (parmtr) {
/* need 2 positions for i^1 and i^-1. */
			length = 2 + SUBG_LENGTH[subg];
			free(COSREP);
			free(COSREP_A);
			COSREP = (int *) eemalloc(sizeof(int) * (1 + length));
			COSREP_A = (char *) eemalloc(1 + length);
/* assemble this word as an additional subgroup generator. */
			if (Gen_st[1].gen == '0') {
/* for number generators.  */
				if (conji > 0) {
					COSREP[length] = -i;
					COSREP[1] = i;
				} else {
					COSREP[length] = i; 
					COSREP[1] = -i;
				}
				for (begs = &SUBGROUP_GEN[SUBG_INDEX[subg]], ends = beg - 3 + length, j = 2; begs <= ends; begs++,j++) {
                                	t = *begs;
                                	t = COL_TO_GEN[t];
                                	COSREP[j] = t;
				}
			} else {
/* for letter generators.  */
			if (conji > 0) {
				COSREP[1] = i;
				COSREP[length] = -i;
				COSREP_A[1] = Gen_st[i].gen;
				COSREP_A[length] = toupper(Gen_st[i].gen);
			} else {
				COSREP[1] = -i;
				COSREP[length] = i;
				COSREP_A[length] = Gen_st[i].gen;
				COSREP_A[1] = toupper(Gen_st[i].gen);
			}
			for (begs = &SUBGROUP_GEN[SUBG_INDEX[subg]], ends = beg - 3 + length, j = 2; begs <= ends; begs++,j++) {
				t = *begs;
				t = COL_TO_GEN[t];
				COSREP[j] = t;
				if (t > 0)
					COSREP_A[j] = Gen_st[t].gen;
				else
					COSREP_A[j] = toupper(Gen_st[-t].gen);
			}	
			}
/* allocate space for the new subgroup generator and connect it to
*  the sugroup generator chain.
*/
			p = (Rel_stk_type *) eemalloc(sizeof(Rel_stk_type));
/* put COSREP into subg generator.  */
        		if (Gen_st[1].gen == '0') {
                		p->rel_1 = (int *) eemalloc(sizeof(int) * (length + 1));
                		p->len_1 = length;
                		for (ii = 1; ii <= length; ii++)
                        		p->rel_1[ii] = COSREP[ii];
                		p->rel = (char *) 0;
        		} else {
                		p->rel = (char *) eemalloc(length + 1); /* +1 for '\0' */
                		p->len = length;
                		for (ii = 1; ii <= length; ii++)
                        		p->rel[ii - 1] = COSREP_A[ii];
                		p->rel[ii-1] = '\0';
                		p->rel_1 = (int *) 0;
        		}
			p->exp = 1;
        		p->next = (Rel_stk_type *) 0;
        		Sgen_no++;
        		Newsg++;
/* connect the new to the chain of subg generators.  */
        		INDEX = FALSE;
			if (S_gens) {
				for (pp = S_gens; pp->next; pp = pp->next);
				pp->next = p;
			} else 
				S_gens = p;
			}
		}
		}
	}
	} 			
	if (Newsg != 0) {
/* check if there's enough room for new subgroup gens */
/* what length is the new sgs? newsg_len. */
	newsg_len = 0;
	for (pp = S_gens, i = 1; i <= Sgen_no - Newsg; i++, pp = pp->next);
	if (Gen_st[1].gen == '0')
		for (;pp != (Rel_stk_type *) 0; pp = pp->next)
			newsg_len += pp->len_1;
	else
		for (;pp != (Rel_stk_type *) 0; pp = pp->next)
                        newsg_len += pp->len;
	newsg_len += 2 * Newsg;
/* room in array y? */
	room_in_y = DED_PT - &CT(NEXTDF, 1);
	if (room_in_y < newsg_len) {
/* have to make room for new sg by discarding n cosets. */
		n = (newsg_len - room_in_y) / NCOL + 1;
/* fix NALIVE and MAXROW by n.  */
		NALIVE -= n;
		MAXROW -= n;
		NEXTDF = Num2Addr(NALIVE + 1);
		DED_PT = &CT(NEXTDF, 1);
		DED_END = DED_PT;
/* fix CT table entres which are related to discarded cosets by 0. */
		for (kill = NALIVE + n; kill > NALIVE; kill--) 
			for (i = 1; i <= NCOL; i++) {
				killi = CT(Num2Addr(kill), i);
				if (killi == 0)
					continue;
				j = INV_TO_COL[i];
				CT(Num2Addr(killi), j) = 0;
			}
	fprintf (fout, " %d cosets are discarded \n Maxmum table size %d\n", n,MAXROW);
	}
	}
}