1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/***************************************
Routines for compressing the DFA by commoning-up equivalent states
***************************************/
/*
**********************************************************************
* Copyright (C) Richard P. Curnow 2001-2003,2005,2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
**********************************************************************
*/
/*
The input to this stage is the 'raw' DFA build from the NFA by the subset
construction. Depending on the style of the NFA, there may be large chunks
of the DFA that have equivalent functionality, in terms of resulting in the
same attributes for the same sequence of input tokens, but which are reached
by different prefixes. The idea of this stage is to common up such regions,
to reduce the size of the DFA and hence the table sizes that are generated.
Conceptually, the basis of the algorithm is to assign the DFA states to
equivalence classes. If there are N different tags-combinations, there are
initially N+1 classes. All states that can exit with a particular value are
placed in a class together, and all non-accepting states are placed together.
Now, a pass is made over all pairs of states. Two states remain equivalent
if for each token, their outbound transitions go to states in the same class.
If the states do not stay equivalent, the class they were in is split
accordingly. This is repeated again and again until no more bisections
occur.
The algorithm actually used is to assign an ordering to the states based on
their current class and outbound transitions. The states are then sorted.
This allows all checking to be done on near-neighbours in the sequence
generated by the sort, which brings the execution time down to something
finite.
*/
#include "dfasyn.h"
static int last_eq_class; /* Next class to assign */
static int Nt; /* Number of tokens; has to be made static to be visible to comparison fn. */
/* To give 'general_compre' visibility of the current equiv. classes of the
destination states */
static DFANode **local_dfas;
static void calculate_signatures(DFANode **seq, DFANode **dfas, int ndfas)/*{{{*/
/**** Determine state signatures based on transitions and current classes. ****/
{
unsigned long sig;
int i, t;
for (i=0; i<ndfas; i++) {
DFANode *s = seq[i];
sig = 0UL;
for (t=0; t<Nt; t++) {
int di = s->map[t];
if (di >= 0) {
DFANode *d = dfas[di];
int deq_class = d->eq_class;
sig = increment(sig, deq_class & 0xf); /* 16 bit pairs in sig */
}
}
s->signature = sig;
}
}
/*}}}*/
static int general_compare(const void *a, const void *b)/*{{{*/
/************************* Do full compare on states *************************/
{
Castderef (a, const DFANode *, aa);
Castderef (b, const DFANode *, bb);
if (aa->eq_class < bb->eq_class) {
return -1;
} else if (aa->eq_class > bb->eq_class) {
return +1;
} else if (aa->signature < bb->signature) {
return -1;
} else if (aa->signature > bb->signature) {
return +1;
} else {
/* The hard way... */
int i;
for (i=0; i<Nt; i++) {
int am = aa->map[i];
int bm = bb->map[i];
/* Map transition destinations to the current equivalence class of the
destination state (otherwise compressor is very pessimistic). */
am = (am>=0) ? local_dfas[am]->eq_class: -1;
bm = (bm>=0) ? local_dfas[bm]->eq_class: -1;
if (am < bm) return -1;
else if (am > bm) return +1;
}
}
/* If you get here, the states are still equivalent */
return 0;
}
/*}}}*/
static int split_classes(DFANode **seq, DFANode **dfas, int ndfas)/*{{{*/
/*********************** Do one pass of class splitting ***********************/
{
int i;
int had_to_split = 0;
calculate_signatures(seq, dfas, ndfas);
qsort(seq, ndfas, sizeof(DFANode *), general_compare);
seq[0]->new_eq_class = seq[0]->eq_class;
for (i=1; i<ndfas; i++) {
seq[i]->new_eq_class = seq[i]->eq_class;
if (seq[i]->eq_class == seq[i-1]->eq_class) {
/* May need to split, otherwise states were previously separated anyway
*/
if (general_compare(seq+i, seq+i-1) != 0) {
/* Different transition pattern, split existing equivalent class */
had_to_split = 1;
seq[i]->new_eq_class = ++last_eq_class;
if (verbose) fprintf(stderr, "Found %d equivalence classes\r", last_eq_class+1);
} else {
/* This works even if seq[i-1] was assigned a new class due to
splitting from seq[i-2] etc. */
seq[i]->new_eq_class = seq[i-1]->new_eq_class;
}
}
}
/* Set classes to new class values. */
for (i=0; i<ndfas; i++) {
seq[i]->eq_class = seq[i]->new_eq_class;
}
return had_to_split;
}
/*}}}*/
static int initial_compare(const void *a, const void *b)/*{{{*/
/************************** Sort based on tags **************************/
{
Castderef (a, const DFANode *, aa);
Castderef (b, const DFANode *, bb);
int status;
int i;
for (i=0; i<n_evaluators; i++) {
const char *ar = aa->attrs[i], *br = bb->attrs[i];
if (!ar) ar = get_defattr(i);
if (!br) br = get_defattr(i);
/* Sort so that states with identical attributes appear together. */
if (!ar && br) {
return -1;
} else if (ar && !br) {
return +1;
} else {
if (ar && br) {
status = strcmp(ar, br);
if (status < 0) return -1;
else if (status > 0) return +1;
}
/* So neither had an attribute at all, or both did and they were equal.
* i.e. need to look at attributes further up the vectors */
}
}
/* Got here => both states were identical in terms of their attribute sets */
return 0;
}
/*}}}*/
static void assign_initial_classes(DFANode **seq, int ndfas)/*{{{*/
/******************* Determine initial equivalence classes. *******************/
{
int i;
qsort(seq, ndfas, sizeof(DFANode *), initial_compare);
last_eq_class = 0;
seq[0]->eq_class = last_eq_class;
for (i=1; i<ndfas; i++) {
if (initial_compare(seq+i-1, seq+i) != 0) {
/* Not same as previous entry, assign a new class */
seq[i]->eq_class = ++last_eq_class;
} else {
/* Same class as last entry */
seq[i]->eq_class = last_eq_class;
}
}
}
/*}}}*/
/*{{{ compress_states() */
static void compress_states(struct DFA *dfa, int n_dfa_entries, struct DFAEntry *dfa_entries)
/***** Compress the DFA so there is precisely one state in each eq. class *****/
{
int *reps;
int i, j, t;
int neqc;
int new_index;
if (verbose) fprintf(stderr, "%d DFA states before compression\n", dfa->n);
if (report) {
fprintf(report,
"\n-----------------------------\n"
"------ COMPRESSING DFA ------\n"
"-----------------------------\n");
}
neqc = 1 + last_eq_class;
/* Array containing which state is the representative of each eq. class.
Keep the state which had the lowest array index. */
reps = new_array(int, neqc);
for (i=0; i<neqc; i++) reps[i] = -1; /* undefined */
/* Go through DFA states to find the representative of each class. */
for (i=0; i<dfa->n; i++) {
int eqc = dfa->s[i]->eq_class;
if (reps[eqc] < 0) {
reps[eqc] = i;
dfa->s[i]->is_rep = 1;
} else {
dfa->s[i]->is_rep = 0;
}
}
/* Go through DFA states and assign new indices. */
for (i=0, new_index=0; i<dfa->n; i++) {
if (dfa->s[i]->is_dead) {
dfa->s[i]->new_index = -1;
if (report) fprintf(report, "Old DFA state %d becomes -1 (dead state)\n", i);
} else if (dfa->s[i]->is_rep) {
dfa->s[i]->new_index = new_index++;
if (report) fprintf(report, "Old DFA state %d becomes %d\n", i, dfa->s[i]->new_index);
} else {
int eqc = dfa->s[i]->eq_class;
int rep = reps[eqc];
/* This assignment works because the representative for the class
must have been done earlier in the loop. */
dfa->s[i]->new_index = dfa->s[rep]->new_index;
if (report) fprintf(report, "Old DFA state %d becomes %d (formerly %d)\n", i, dfa->s[i]->new_index, rep);
}
}
/* Go through all transitions and fix them up. */
for (i=0; i<dfa->n; i++) {
DFANode *s = dfa->s[i];
for (t=0; t<Nt; t++) {
int dest = s->map[t];
if (dest >= 0) {
s->map[t] = dfa->s[dest]->new_index;
}
}
}
/* Go through the entries and fix their states */
for (i=0; i<n_dfa_entries; i++) {
int ni = dfa->s[dfa_entries[i].state_number]->new_index;
if (report) {
fprintf(report, "Entry <%s>, formerly state %d, now state %d\n",
dfa_entries[i].entry_name,
dfa_entries[i].state_number, ni);
}
dfa_entries[i].state_number = dfa->s[dfa_entries[i].state_number]->new_index;
}
/* Fix from_state */
for (i=0; i<dfa->n; i++) {
int old_from_state, new_from_state;
/* If we're not going to preserve the state, move along */
if (!dfa->s[i]->is_rep) continue;
old_from_state = dfa->s[i]->from_state;
/* Any entry state ..., move along */
if (old_from_state < 0) continue;
new_from_state = dfa->s[reps[dfa->s[old_from_state]->eq_class]]->new_index;
dfa->s[i]->from_state = new_from_state;
}
/* Go through and crunch the entries in the DFA array, fixing up the indices */
for (i=j=0; i<dfa->n; i++) {
if (!dfa->s[i]->is_dead && dfa->s[i]->is_rep) {
dfa->s[j] = dfa->s[i];
dfa->s[j]->index = dfa->s[j]->new_index;
j++;
}
}
free(reps);
dfa->n = new_index; /* ignore dead states which are completely pruned. */
if (verbose) fprintf(stderr, "%d DFA states after compression", dfa->n);
}
/*}}}*/
static void discard_nfa_bitmaps(struct DFA *dfa)/*{{{*/
/********** Discard the (now inaccurate) NFA bitmaps from the states **********/
{
int i;
for (i=0; i<dfa->n; i++) {
free(dfa->s[i]->nfas);
dfa->s[i]->nfas = NULL;
}
return;
}
/*}}}*/
static void print_classes(DFANode **dfas, int ndfas)/*{{{*/
{
int i;
#if 1
/* Comment out to print this stuff for debug */
return;
#endif
if (!report) return;
fprintf(report, "Equivalence classes are :\n");
for (i=0; i<ndfas; i++) {
fprintf(report, "State %d class %d\n", i, dfas[i]->eq_class);
}
fprintf(report, "\n");
return;
}
/*}}}*/
static int has_any_nondefault_attribute(const DFANode *x)/*{{{*/
{
int result = 0;
int i;
for (i=0; i<n_evaluators; i++) {
if (x->attrs[i]) {
char *defattr;
defattr = get_defattr(i);
if (defattr && strcmp(defattr, x->attrs[i])) {
result = 1;
break;
}
}
}
return result;
}
/*}}}*/
static void find_dead_states(DFANode **dfas, int ndfas, int ntokens)/*{{{*/
{
/* Find any state that has no transitions out of it and no attribute.
* If you get there, you're guaranteed to be stuck.
* Then, repeatedly look for states which are such that all transitions from
* them lead to dead states. Mark these dead too.
* Then, go through all the dead states and remove their transitions.
* This will force them all into a single class later. */
int did_any;
int i, j;
/* Eventually, consider looking for results that are non-default. */
char *leads_to_result;
int total_found = 0;
leads_to_result = new_array(char, ndfas);
memset(leads_to_result, 0, ndfas);
if (report) {
fprintf(report, "Searching for dead states...\n");
}
do {
did_any = 0;
for (i=0; i<ndfas; i++) {
if (leads_to_result[i] == 0) {
if (has_any_nondefault_attribute(dfas[i])) {
leads_to_result[i] = 1;
did_any = 1;
continue;
}
for (j=0; j<ntokens; j++) {
int next_state = dfas[i]->map[j];
if ((next_state >= 0) && leads_to_result[next_state]) {
leads_to_result[i] = 1;
did_any = 1;
goto do_next_dfa_state;
}
}
}
do_next_dfa_state:
(void) 0;
}
} while (did_any);
/* Now prune any transition to states that have no path to a result. */
for (i=0; i<ndfas; i++) {
if (leads_to_result[i] == 0) {
total_found++;
if (report) {
fprintf(report, "DFA state %d is dead\n", i);
}
dfas[i]->from_state = -1;
dfas[i]->via_token = -1;
dfas[i]->is_dead = 1;
} else {
dfas[i]->is_dead = 0;
}
for (j=0; j<ntokens; j++) {
int next_state = dfas[i]->map[j];
if (leads_to_result[next_state] == 0) {
dfas[i]->map[j] = -1;
}
}
}
free(leads_to_result);
if (!total_found && report) {
fprintf(report, "(no dead states found)\n");
}
}
/*}}}*/
/*{{{ compress_dfa() */
void compress_dfa(struct DFA *dfa, int ntokens,
int n_dfa_entries, struct DFAEntry *dfa_entries)
{
DFANode **seq; /* Storage for node sequence */
int i;
int had_to_split;
/* Safety net */
if (dfa->n <= 0) return;
local_dfas = dfa->s;
Nt = ntokens;
seq = new_array(DFANode *, dfa->n);
for (i=0; i<dfa->n; i++) {
seq[i] = dfa->s[i];
}
find_dead_states(dfa->s, dfa->n, ntokens);
assign_initial_classes(seq, dfa->n);
do {
print_classes(dfa->s, dfa->n);
had_to_split = split_classes(seq, dfa->s, dfa->n);
} while (had_to_split);
print_classes(dfa->s, dfa->n);
compress_states(dfa, n_dfa_entries, dfa_entries);
discard_nfa_bitmaps(dfa);
free(seq);
return;
}
/*}}}*/
|