1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/***************************************
Routines to compress the DFA transition tables, by identifying where two DFA
states have a lot of transitions the same.
***************************************/
/*
**********************************************************************
* Copyright (C) Richard P. Curnow 2001-2003,2005,2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
**********************************************************************
*/
#include "dfasyn.h"
/* ================================================================= */
/* Treat 'x' as a set of 16 bit pairs, with field (0..15) specifying
which. Increment the field'th bit pair as a gray code, in the
pattern 00->01->11->10->00 */
unsigned long increment(unsigned long x, int field)
{
int f2 = field + field;
static unsigned char transxor[4] = {1, 2, 2, 1};
unsigned long g = x >> f2;
unsigned long h = transxor[g&3];
return x ^ (h<<f2);
}
/* ================================================================= */
/* Calculate the number of bits set in an unsigned long. */
unsigned long count_bits_set(unsigned long x)
{
unsigned long y = x;
unsigned long c;
c = 0x55555555UL;
y = ((y>>1) & c) + (y & c);
c = 0x33333333UL;
y = ((y>>2) & c) + (y & c);
y = (y>>4) + y;
c = 0x0f0f0f0fUL;
y &= c;
y = (y>>8) + y;
y = (y>>16) + y;
return y & 0x1f;
}
/* ================================================================= */
/* Compute 'signatures' of the transitions out of a particular state.
The signature is given by considering the destination state numbers mod 16,
and counting how many transitions there are in each resulting equivalence
class. The number is encoded using the gray code implied by the increment
fn. */
static void
compute_transition_sigs(struct DFA *dfa, int ntokens)
{
int i, j;
for (i=0; i<dfa->n; i++) {
unsigned long ts = 0UL; /* transition signature */
for (j=0; j<ntokens; j++) {
unsigned long dest = dfa->s[i]->map[j];
dest &= 0xf; /* 16 bit pairs in 'ts' */
ts = increment(ts, dest);
}
dfa->s[i]->transition_sig = ts;
}
}
/* ================================================================= */
#define REQUIRED_BENEFIT 2
static void
find_default_states(struct DFA *dfa, int ntokens)
{
int i, j, t;
int best_index;
int best_diff;
int trans_count; /* Number of transitions in working state */
unsigned long tsi;
for (i=0; i<dfa->n; i++) {
trans_count = 0;
for (t=0; t<ntokens; t++) {
if (dfa->s[i]->map[t] >= 0) trans_count++;
}
dfa->s[i]->defstate = -1; /* not defaulted */
best_index = -1;
best_diff = ntokens + 1; /* Worse than any computed value */
tsi = dfa->s[i]->transition_sig;
for (j=0; j<i; j++) {
unsigned long tsj;
unsigned long sigdiff;
int diffsize;
if (dfa->s[j]->defstate >= 0) continue; /* Avoid chains of defstates */
tsj = dfa->s[j]->transition_sig;
/* This is the heart of the technique : if we xor two vectors of bit
pairs encoded with the gray code above, and count the number of bits
set in the result, we get the sum of absolute differences of the bit
pairs. The number of outgoing transitions that differ between the
states must be _at_least_ this value. It may in fact be much greater
(i.e. we may get 'false matches'). However, this algorithm is a quick
way of filtering most of the useless potential default states out. */
sigdiff = tsi ^ tsj;
diffsize = count_bits_set(sigdiff);
if (diffsize >= best_diff) continue;
if (diffsize >= trans_count) continue; /* Else pointless! */
/* Otherwise, do an exact check (i.e. see how much false matching we
suffered). */
diffsize = 0;
for (t=0; t<ntokens; t++) {
if (dfa->s[i]->map[t] != dfa->s[j]->map[t]) {
diffsize++;
}
}
if (((best_index < 0) || (diffsize < best_diff))
&&
(diffsize < (trans_count - REQUIRED_BENEFIT))) {
best_index = j;
best_diff = diffsize;
}
}
dfa->s[i]->defstate = best_index;
dfa->s[i]->best_diff = best_diff;
}
}
/* ================================================================= */
void
compress_transition_table(struct DFA *dfa, int ntokens)
{
compute_transition_sigs(dfa, ntokens);
find_default_states(dfa, ntokens);
}
/* ================================================================= */
#ifdef TEST
int main () {
unsigned long x = 0;
unsigned long x1, x2, x3, x4;
x1 = increment(x, 2);
x2 = increment(x1, 2);
x3 = increment(x2, 2);
x4 = increment(x3, 2);
printf("%d %d %d %d %d\n", x, x1, x2, x3, x4);
printf("1=%d\n", count_bits_set(0x00000001));
printf("2=%d\n", count_bits_set(0x00000003));
printf("3=%d\n", count_bits_set(0x00000007));
printf("4=%d\n", count_bits_set(0x0000000f));
printf("4=%d\n", count_bits_set(0xf0000000));
return 0;
}
#endif
|