1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
* This file is part of the Advance project.
*
* Copyright (C) 2004 Andrea Mazzoleni
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "portable.h"
#include "part.h"
#include "fat.h"
#include "error.h"
static void part_entry_set(struct partition_entry* entry, unsigned offset, unsigned size, const struct disk_geometry* geometry)
{
unsigned h, s, c;
unsigned start, end;
le_uint32_write(entry->start, offset);
le_uint32_write(entry->size, size);
start = offset;
end = offset + size - 1;
s = (start % geometry->sectors) + 1;
start /= geometry->sectors;
h = start % geometry->heads;
start /= geometry->heads;
c = start;
entry->start_head = h;
entry->start_seccyl[0] = (s & 0x3F) | ((c >> 2) & 0xc0);
entry->start_seccyl[1] = c & 0xFF;
s = (end % geometry->sectors) + 1;
end /= geometry->sectors;
h = end % geometry->heads;
end /= geometry->heads;
c = end;
entry->end_head = h;
entry->end_seccyl[0] = (s & 0x3F) | ((c >> 2) & 0xc0);
entry->end_seccyl[1] = c & 0xFF;
}
/**
* Create a partition table filled with a bootable FAT partition.
* \param entry Partition entry to use. From 0 to 3.
* The boot code is not modified.
*/
void part_setup(unsigned char* mbr, unsigned entry, unsigned fat_bit, unsigned fat_begin, unsigned fat_size, const struct disk_geometry* geometry)
{
struct partition_table* part = (struct partition_table*)mbr;
/* clear the table */
memset(part->entries, 0, sizeof(part->entries));
part->entries[entry].status = 0x80;
if (fat_bit == 12)
part->entries[entry].type = 1; /* FAT 12 */
else if (fat_bit == 16)
part->entries[entry].type = 6; /* FAT 16 (>32M) */
else if (fat_bit == 32)
part->entries[entry].type = 0xb; /* W95 FAT 32 */
else
part->entries[entry].type = 0;
assert(fat_begin + fat_size <= geometry->size);
part_entry_set(&part->entries[entry], fat_begin, fat_size, geometry);
part->id[0] = 0x55;
part->id[1] = 0xAA;
}
/**
* Change the specified MBR sector to be a FAT boot sector.
* \param mbr MBR to change.
* \param boot FAT boot sector to imitate.
* \param bit FAT bit (12, 16 or 32).
* \param pos Position of the FAT boot sector on the disk (in number of sectors).
*/
int part_fat_setup(unsigned char* mbr, const unsigned char* boot, unsigned bit, unsigned pos)
{
struct fat_boot_sector* fat;
unsigned size_in_sector;
unsigned code_start;
if ((mbr[0] != 0xEB || mbr[2] != 0x90) && (mbr[0] != 0xE9)) {
error_set("Invalid jump signature in the mbr sector.");
return -1;
}
if (mbr[510] != 0x55 || mbr[511] != 0xAA) {
error_set("Invalid end AA55 signature in the mbr sector.");
return -1;
}
if (mbr[0] == 0xEB) {
code_start = mbr[1] + 2;
} else {
error_set("Unsupported jump in the mbr sector.");
return -1;
}
if (bit == 32 && code_start < 0x5A) {
error_set("Invalid code start %X in the mbr sector (for fat32 it must be at least 5A).", code_start);
return -1;
}
if (code_start < 0x3E) {
error_set("Invalid code start %X in the mbr sector (it must be at least 3E).", code_start);
return -1;
}
/* copy the FAT boot sector info */
if (bit == 32)
memcpy(mbr + 3, boot + 3, 0x5A - 3);
else
memcpy(mbr + 3, boot + 3, 0x3E - 3);
fat = (struct fat_boot_sector*)mbr;
/* increment the number of reserved sector */
le_uint16_write(&fat->BPB_RsvdSecCnt, le_uint16_read(&fat->BPB_RsvdSecCnt) + pos);
/* set the number of hidden sector */
if (le_uint32_read(&fat->BPB_HiddSec) != pos) {
error_set("Invalid number of hidden sector in the fat boot sector, it must be %d.", pos);
return -1;
}
le_uint32_write(&fat->BPB_HiddSec, 0);
/* increment the number of total sectors */
if (le_uint32_read(fat->BPB_TotSec32) != 0)
size_in_sector = le_uint32_read(fat->BPB_TotSec32);
else
size_in_sector = le_uint16_read(fat->BPB_TotSec16);
size_in_sector += pos;
if (bit == 32 || size_in_sector >= 0x10000) {
le_uint16_write(fat->BPB_TotSec16, 0);
le_uint32_write(fat->BPB_TotSec32, size_in_sector);
} else {
le_uint16_write(fat->BPB_TotSec16, size_in_sector);
le_uint32_write(fat->BPB_TotSec32, 0);
}
/* increment other fat32 pointers */
if (bit == 32) {
le_uint16_write(fat->bit.fat32.BPB_FSInfo, le_uint16_read(fat->bit.fat32.BPB_FSInfo) + pos);
/* no backup */
le_uint16_write(fat->bit.fat32.BPB_BkBootSec, 0);
}
return 0;
}
|