1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
string
skey_opt()
{
return "l";
}
string
skey_usage()
{
return "\n";
}
static void
skey_showusage()
{
printf("usage : skey %s", skey_usage());
}
string
skey_help()
{
return "Help";
}
#define ASSOC_ARRAY_FAN_OUT 16
#define ASSOC_ARRAY_FAN_MASK (ASSOC_ARRAY_FAN_OUT - 1)
#define ASSOC_ARRAY_LEVEL_STEP (ilog2(ASSOC_ARRAY_FAN_OUT))
#define ASSOC_ARRAY_LEVEL_STEP_MASK (ASSOC_ARRAY_LEVEL_STEP - 1)
#define ASSOC_ARRAY_KEY_CHUNK_MASK (ASSOC_ARRAY_KEY_CHUNK_SIZE - 1)
#define ASSOC_ARRAY_KEY_CHUNK_SHIFT (ilog2(BITS_PER_LONG))
#define ASSOC_ARRAY_PTR_TYPE_MASK 0x1UL
#define ASSOC_ARRAY_PTR_LEAF_TYPE 0x0UL /* Points to leaf (or nowhere) */
#define ASSOC_ARRAY_PTR_META_TYPE 0x1UL /* Points to node or shortcut */
#define ASSOC_ARRAY_PTR_SUBTYPE_MASK 0x2UL
#define ASSOC_ARRAY_PTR_NODE_SUBTYPE 0x0UL
#define ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE 0x2UL
/* Keyring stuff */
#define KEYRING_PTR_SUBTYPE 0x2UL
static int keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
{
return (unsigned long)x & KEYRING_PTR_SUBTYPE;
}
static int assoc_array_ptr_is_meta(const struct assoc_array_ptr *x)
{
return (unsigned long)x & ASSOC_ARRAY_PTR_TYPE_MASK;
}
static int assoc_array_ptr_is_leaf(const struct assoc_array_ptr *x)
{
return !assoc_array_ptr_is_meta(x);
}
static int assoc_array_ptr_is_shortcut(const struct assoc_array_ptr *x)
{
return (unsigned long)x & ASSOC_ARRAY_PTR_SUBTYPE_MASK;
}
static int assoc_array_ptr_is_node(const struct assoc_array_ptr *x)
{
return !assoc_array_ptr_is_shortcut(x);
}
static void *assoc_array_ptr_to_leaf(const struct assoc_array_ptr *x)
{
return (void *)((unsigned long)x & ~ASSOC_ARRAY_PTR_TYPE_MASK);
}
static
unsigned long __assoc_array_ptr_to_meta(const struct assoc_array_ptr *x)
{
return (unsigned long)x &
~(ASSOC_ARRAY_PTR_SUBTYPE_MASK | ASSOC_ARRAY_PTR_TYPE_MASK);
}
static
struct assoc_array_node *assoc_array_ptr_to_node(const struct assoc_array_ptr *x)
{
return (struct assoc_array_node *)__assoc_array_ptr_to_meta(x);
}
static
struct assoc_array_shortcut *assoc_array_ptr_to_shortcut(const struct assoc_array_ptr *x)
{
return (struct assoc_array_shortcut *)__assoc_array_ptr_to_meta(x);
}
static
struct assoc_array_ptr *__assoc_array_x_to_ptr(const void *p, unsigned long t)
{
return (struct assoc_array_ptr *)((unsigned long)p | t);
}
static
struct assoc_array_ptr *assoc_array_leaf_to_ptr(const void *p)
{
return __assoc_array_x_to_ptr(p, ASSOC_ARRAY_PTR_LEAF_TYPE);
}
static
struct assoc_array_ptr *assoc_array_node_to_ptr(const struct assoc_array_node *p)
{
return __assoc_array_x_to_ptr(
p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_NODE_SUBTYPE);
}
static
struct assoc_array_ptr *assoc_array_shortcut_to_ptr(const struct assoc_array_shortcut *p)
{
return __assoc_array_x_to_ptr(
p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE);
}
/* Keyring stuff */
static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
{
void *object = assoc_array_ptr_to_leaf(x);
return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
}
/* BEGIN: struct key access */
struct keyring_index_key *get_index_key_from_key(struct key *key)
{
return (struct keyring_index_key *)((unsigned long)&(key->flags)
+ sizeof(key->flags));
}
struct key_type *get_type_from_key(struct key *key)
{
return (struct key_type *)((unsigned long)&(key->flags)
+ sizeof(key->flags));
}
char *get_description_from_key(struct key *key)
{
return (char *)((unsigned long)&(key->flags)
+ sizeof(key->flags)
+ sizeof(struct key_type *));
}
union key_payload *get_payload_from_key(struct key *key)
{
return (union key_payload *)((unsigned long)&(key->flags)
+ sizeof(key->flags)
+ sizeof(struct keyring_index_key));
}
struct list_head *get_name_link_from_key(struct key *key)
{
return (struct list_head *)((unsigned long)&(key->flags)
+ sizeof(key->flags)
+ sizeof(struct keyring_index_key));
}
struct assoc_array *get_keys_from_key(struct key *key)
{
return (struct assoc_array *)((unsigned long)&(key->flags)
+ sizeof(key->flags)
+ sizeof(struct keyring_index_key)
+ sizeof(struct list_head));
}
/* END: struct key access */
static void delete_keyring_subtree(struct assoc_array_ptr *root)
{
struct assoc_array_shortcut *shortcut;
struct assoc_array_node *node;
struct assoc_array_ptr *cursor, *parent;
int slot = -1;
cursor = root;
if (!cursor) {
return;
}
if (assoc_array_ptr_is_shortcut(cursor)) {
/* Descend through a shortcut */
shortcut = assoc_array_ptr_to_shortcut(cursor);
parent = cursor;
cursor = shortcut->next_node;
}
node = assoc_array_ptr_to_node(cursor);
slot = 0;
if(node->nr_leaves_on_branch <= 0) return;
do {
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
struct assoc_array_ptr *ptr = node->slots[slot];
if (!ptr)
continue;
if (assoc_array_ptr_is_meta(ptr)) {
parent = cursor;
cursor = ptr;
if (assoc_array_ptr_is_shortcut(cursor)) {
/* Descend through a shortcut */
shortcut = assoc_array_ptr_to_shortcut(cursor);
parent = cursor;
cursor = shortcut->next_node;
}
node = assoc_array_ptr_to_node(cursor);
slot = 0;
} else {
struct key *leaf;
struct keyring_index_key *index_key;
char *description;
void *payload_ptr;
int i,j;
/* no need to delete keyrings, only data */
if(keyring_ptr_is_keyring(ptr))
continue;
/* delete the leaf payload */
leaf = (struct key *)assoc_array_ptr_to_leaf(ptr);
index_key = get_index_key_from_key(leaf);
/*
Now delete the keys of the different key types.
The following key types are handled for now:
user, ceph, pkcs7_test, asymmetric(X509), rxpc
The following key types are NOT handled (yet):
dns_resolver (no secret keys, just used for DNS)
Add a new else if() for new key types.
*/
if(getstr(index_key->type->name) == "user") {
struct user_key_payload **user_key_payload;
unsigned short datalen;
payload_ptr=(void *)get_payload_from_key(leaf);
user_key_payload = (struct user_key_payload **)payload_ptr;
datalen = (*user_key_payload)->datalen;
memset((char *)&(*user_key_payload)->data, 'A', datalen);
} else if(getstr(index_key->type->name) == "ceph") {
struct ceph_crypto_key **ceph_payload;
int len;
payload_ptr=(void *)get_payload_from_key(leaf);
ceph_payload = (struct ceph_crypto_key **)payload_ptr;
len = (*ceph_payload)->len;
memset((char *)&(*ceph_payload)->key, 'A', len);
} else if(getstr(index_key->type->name) == "pkcs7_test") {
struct user_key_payload **user_key_payload;
unsigned short datalen;
payload_ptr=(void *)get_payload_from_key(leaf);
user_key_payload = (struct user_key_payload **)payload_ptr;
datalen = (*user_key_payload)->datalen;
memset((char *)&(*user_key_payload)->data, 'A', datalen);
} else if(getstr(index_key->type->name) == "asymmetric") {
struct public_key **public_key;
unsigned short keylen;
/* data[0] is asym_crypto */
payload_ptr=(void *)get_payload_from_key(leaf);
public_key = (struct public_key **)payload_ptr;
keylen = (*public_key)->keylen;
memset((char *)&(*public_key)->key, 'A', keylen);
} else if(getstr(index_key->type->name) == ".request_key_auth") {
struct request_key_auth **request_key;
unsigned short datalen;
payload_ptr=(void *)get_payload_from_key(leaf);
request_key = (struct request_key_auth **)payload_ptr;
datalen = leaf->datalen;
memset((char *)&(*request_key)->data, 'A', datalen);
} else if(getstr(index_key->type->name) == "rxrpc") {
struct rxrpc_key_token **rxrpc_key_token, *token;
struct rxkad_key *kad;
struct rxk5_key *k5;
int token_count = 0;
payload_ptr=(void *)get_payload_from_key(leaf);
rxrpc_key_token = (struct rxrpc_key_token **)payload_ptr;
for(; rxrpc_key_token;
rxrpc_key_token = &(*rxrpc_key_token)->next,
token_count++) {
token = *rxrpc_key_token;
switch(token->security_index) {
case 2 : /* RXRPC_SECURITY_RXKAD */
/* anonymous union, use pointer arithmetic */
kad = token->next +
sizeof(struct rxrpc_key_token *);
memset(&kad.session_key, 'A', 8);
memset(&kad.ticket, 'A', kad.ticket_len);
break;
case 5 : /* RXRPC_SECURITY_RXK5 */
/* anonymous union, use pointer arithmetic */
k5 = token->next +
sizeof(struct rxrpc_key_token *);
memset(k5.ticket, 'A', k5.ticket_len);
memset(k5.ticket2, 'A', k5.ticket2_len);
memset(k5.session.data, 'A', k5.session.data_len);
memset(k5->addresses.data, 'A', k5->addresses.data_len);
memset(k5->authdata.data, 'A', k5->authdata.data_len);
break;
default :
printf("WARNING: unknown security index: %d\n",
token->security_index);
}
/* max number of tokens = 8 */
if(token_count > 8) {
printf("WARNING: too many rxrpc tokens!\n");
break;
}
}
} else if(getstr(index_key->type->name) == "dns_resolver") {
/* nothing to do here, no secret data */
} else if(getstr(index_key->type->name) == "big_key") {
printf("WARNING: key_type=big_key not handled!\n");
} else {
printf("WARNING: unsupported key type = %s!\n",
getstr(index_key->type->name));
}
}
}
parent = node->back_pointer;
slot = node->parent_slot;
if (parent) {
/* Move back up to the parent */
if (assoc_array_ptr_is_shortcut(parent)) {
shortcut = assoc_array_ptr_to_shortcut(parent);
cursor = parent;
parent = shortcut->back_pointer;
slot = shortcut->parent_slot;
}
/* Ascend to next slot in parent node */
cursor = parent;
node = assoc_array_ptr_to_node(cursor);
slot++;
}
} while(parent);
return;
}
void delete_keyring(struct assoc_array *keyring)
{
delete_keyring_subtree(keyring->root);
}
int
skey()
{
int i,j,k;
struct list_head **tab;
tab = &keyring_name_hash;
for (i = 0; i < 32; i++)
{
struct list_head *next, *head;
head = (struct list_head *) (tab + i);
next = (struct list_head *) head->next;
if (!next)
continue;
while (next != head)
{
struct key *mykey, *off = 0;
struct list_head *name_link;
struct assoc_array *keys;
mykey = (struct key *)((unsigned long)(next)
- (unsigned long)&(off->flags)
- sizeof(off->flags)
- sizeof(struct keyring_index_key));
name_link = get_name_link_from_key(mykey);
keys = get_keys_from_key(mykey);
delete_keyring(keys);
next = (struct list_head *) name_link->next;
}
}
return 1;
}
|