1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// license:BSD-3-Clause
// copyright-holders:Olivier Galibert
#include <assert.h>
#include "mfi_dsk.h"
#include <zlib.h>
/*
Mess floppy image structure:
- header with signature, number of cylinders, number of heads. Min
track and min head are considered to always be 0. The two top bits
of the cylinder count is the resolution: 0=tracks, 1=half tracks,
2=quarter tracks.
- vector of track descriptions, looping on cylinders with the given
resolution and sub-lopping on heads, each description composed of:
- offset of the track data in bytes from the start of the file
- size of the compressed track data in bytes (0 for unformatted)
- size of the uncompressed track data in bytes (0 for unformatted)
- track data
All values are 32-bits lsb first.
Track data is zlib-compressed independently for each track using the
simple "compress" function.
Track data consists of a series of 32-bits lsb-first values
representing magnetic cells. Bits 0-27 indicate the sizes, and bits
28-31 the types. Type can be:
- 0, MG_A -> Magnetic orientation A
- 1, MG_B -> Magnetic orientation B
- 2, MG_N -> Non-magnetized zone (neutral)
- 3, MG_D -> Damaged zone, reads as neutral but cannot be changed by writing
Remember that the fdcs detect transitions, not absolute levels, so
the actual physical significance of the orientation A and B is
arbitrary.
Tracks data is aligned so that the index pulse is at the start,
whether the disk is hard-sectored or not.
The size is the angular size in units of 1/200,000,000th of a turn.
Such a size, not coincidentally at all, is also the flyover time in
nanoseconds for a perfectly stable 300rpm drive. That makes the
standard cell size of a MFM 3.5" DD floppy at 2000 exactly for
instance (2us). Smallest expected cell size is 500 (ED density
drives).
The sum of all sizes must of course be 200,000,000.
An unformatted track is equivalent to one big MG_N cell covering a
whole turn, but is encoded as zero-size.
The "track splice" information indicates where to start writing
if you try to rewrite a physical disk with the data. Some
preservation formats encode that information, it is guessed for
others. The write track function of fdcs should set it. The
representation is the angular position relative to the index.
The media type is divided in two parts. The first half
indicate the physical form factor, i.e. all medias with that
form factor can be physically inserted in a reader that handles
it. The second half indicates the variants which are usually
detectable by the reader, such as density and number of sides.
TODO: big-endian support
*/
const char mfi_format::sign[16] = "MESSFLOPPYIMAGE"; // Includes the final \0
mfi_format::mfi_format() : floppy_image_format_t()
{
}
const char *mfi_format::name() const
{
return "mfi";
}
const char *mfi_format::description() const
{
return "MESS floppy image";
}
const char *mfi_format::extensions() const
{
return "mfi";
}
bool mfi_format::supports_save() const
{
return true;
}
int mfi_format::identify(io_generic *io, uint32_t form_factor)
{
header h;
io_generic_read(io, &h, 0, sizeof(header));
if(memcmp( h.sign, sign, 16 ) == 0 &&
(h.cyl_count & CYLINDER_MASK) <= 84 &&
(h.cyl_count >> RESOLUTION_SHIFT) < 3 &&
h.head_count <= 2 &&
(!form_factor || !h.form_factor || h.form_factor == form_factor))
return 100;
return 0;
}
bool mfi_format::load(io_generic *io, uint32_t form_factor, floppy_image *image)
{
header h;
entry entries[84*2*4];
io_generic_read(io, &h, 0, sizeof(header));
int resolution = h.cyl_count >> RESOLUTION_SHIFT;
h.cyl_count &= CYLINDER_MASK;
io_generic_read(io, &entries, sizeof(header), (h.cyl_count << resolution)*h.head_count*sizeof(entry));
image->set_variant(h.variant);
std::vector<uint8_t> compressed;
entry *ent = entries;
for(unsigned int cyl=0; cyl <= (h.cyl_count - 1) << 2; cyl += 4 >> resolution)
for(unsigned int head=0; head != h.head_count; head++) {
image->set_write_splice_position(cyl >> 2, head, ent->write_splice, cyl & 3);
if(ent->uncompressed_size == 0) {
// Unformatted track
image->get_buffer(cyl >> 2, head, cyl & 3).clear();
ent++;
continue;
}
compressed.resize(ent->compressed_size);
io_generic_read(io, &compressed[0], ent->offset, ent->compressed_size);
unsigned int cell_count = ent->uncompressed_size/4;
std::vector<uint32_t> &trackbuf = image->get_buffer(cyl >> 2, head, cyl & 3);;
trackbuf.resize(cell_count);
uLongf size = ent->uncompressed_size;
if(uncompress((Bytef *)&trackbuf[0], &size, &compressed[0], ent->compressed_size) != Z_OK)
return false;
uint32_t cur_time = 0;
for(unsigned int i=0; i != cell_count; i++) {
uint32_t next_cur_time = cur_time + (trackbuf[i] & TIME_MASK);
trackbuf[i] = (trackbuf[i] & MG_MASK) | cur_time;
cur_time = next_cur_time;
}
if(cur_time != 200000000)
return false;
ent++;
}
return true;
}
bool mfi_format::save(io_generic *io, floppy_image *image)
{
int tracks, heads;
image->get_actual_geometry(tracks, heads);
int resolution = image->get_resolution();
int max_track_size = 0;
for(int track=0; track <= (tracks-1) << 2; track += 4 >> resolution)
for(int head=0; head<heads; head++) {
int tsize = image->get_buffer(track >> 2, head, track & 3).size();
if(tsize > max_track_size)
max_track_size = tsize;
}
header h;
entry entries[84*2*4];
memcpy(h.sign, sign, 16);
h.cyl_count = tracks | (resolution << RESOLUTION_SHIFT);
h.head_count = heads;
h.form_factor = image->get_form_factor();
h.variant = image->get_variant();
io_generic_write(io, &h, 0, sizeof(header));
memset(entries, 0, sizeof(entries));
int pos = sizeof(header) + (tracks << resolution)*heads*sizeof(entry);
int epos = 0;
auto precomp = global_alloc_array(uint32_t, max_track_size);
auto postcomp = global_alloc_array(uint8_t, max_track_size*4 + 1000);
for(int track=0; track <= (tracks-1) << 2; track += 4 >> resolution)
for(int head=0; head<heads; head++) {
std::vector<uint32_t> &buffer = image->get_buffer(track >> 2, head, track & 3);
int tsize = buffer.size();
if(!tsize) {
epos++;
continue;
}
memcpy(precomp, &buffer[0], tsize*4);
for(int j=0; j<tsize-1; j++)
precomp[j] = (precomp[j] & floppy_image::MG_MASK) |
((precomp[j+1] & floppy_image::TIME_MASK) -
(precomp[j] & floppy_image::TIME_MASK));
precomp[tsize-1] = (precomp[tsize-1] & floppy_image::MG_MASK) |
(200000000 - (precomp[tsize-1] & floppy_image::TIME_MASK));
uLongf csize = max_track_size*4 + 1000;
if(compress(postcomp, &csize, (const Bytef *)precomp, tsize*4) != Z_OK) {
global_free_array(precomp);
global_free_array(postcomp);
return false;
}
entries[epos].offset = pos;
entries[epos].uncompressed_size = tsize*4;
entries[epos].compressed_size = csize;
entries[epos].write_splice = image->get_write_splice_position(track >> 2, head, track & 3);
epos++;
io_generic_write(io, postcomp, pos, csize);
pos += csize;
}
io_generic_write(io, entries, sizeof(header), (tracks << resolution)*heads*sizeof(entry));
global_free_array(precomp);
global_free_array(postcomp);
return true;
}
const floppy_format_type FLOPPY_MFI_FORMAT = &floppy_image_format_creator<mfi_format>;
|