1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
|
/*
* Copyright 2018 Kostas Anagnostou. All rights reserved.
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
*/
/*
* Reference(s):
* - Experiments in GPU-based occlusion culling
* https://web.archive.org/web/20180920045301/https://interplayoflight.wordpress.com/2017/11/15/experiments-in-gpu-based-occlusion-culling/
* - Experiments in GPU-based occlusion culling part 2: MultiDrawIndirect and mesh lodding
* https://web.archive.org/web/20180920045332/https://interplayoflight.wordpress.com/2018/01/15/experiments-in-gpu-based-occlusion-culling-part-2-multidrawindirect-and-mesh-lodding/
*/
#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
namespace
{
#define RENDER_PASS_HIZ_ID 0
#define RENDER_PASS_HIZ_DOWNSCALE_ID 1
#define RENDER_PASS_OCCLUDE_PROPS_ID 2
#define RENDER_PASS_COMPACT_STREAM_ID 3
#define RENDER_PASS_MAIN_ID 4
struct Camera
{
Camera()
{
reset();
}
void reset()
{
m_target.curr = { 0.0f, 0.0f, 0.0f };
m_target.dest = { 0.0f, 0.0f, 0.0f };
m_pos.curr = { 55.0f, 20.0f, 65.0f };
m_pos.dest = { 55.0f, 20.0f, 65.0f };
m_orbit[0] = 0.0f;
m_orbit[1] = 0.0f;
}
void mtxLookAt(float* _outViewMtx)
{
bx::mtxLookAt(_outViewMtx, m_pos.curr, m_target.curr);
}
void orbit(float _dx, float _dy)
{
m_orbit[0] += _dx;
m_orbit[1] += _dy;
}
void dolly(float _dz)
{
const float cnear = 1.0f;
const float cfar = 100.0f;
const bx::Vec3 toTarget = bx::sub(m_target.dest, m_pos.dest);
const float toTargetLen = bx::length(toTarget);
const float invToTargetLen = 1.0f / (toTargetLen + bx::kFloatMin);
const bx::Vec3 toTargetNorm = bx::mul(toTarget, invToTargetLen);
float delta = toTargetLen * _dz;
float newLen = toTargetLen + delta;
if ( (cnear < newLen || _dz < 0.0f)
&& (newLen < cfar || _dz > 0.0f) )
{
m_pos.dest = bx::mad(toTargetNorm, delta, m_pos.dest);
}
}
void consumeOrbit(float _amount)
{
float consume[2];
consume[0] = m_orbit[0] * _amount;
consume[1] = m_orbit[1] * _amount;
m_orbit[0] -= consume[0];
m_orbit[1] -= consume[1];
const bx::Vec3 toPos = bx::sub(m_pos.curr, m_target.curr);
const float toPosLen = bx::length(toPos);
const float invToPosLen = 1.0f / (toPosLen + bx::kFloatMin);
const bx::Vec3 toPosNorm = bx::mul(toPos, invToPosLen);
float ll[2];
bx::toLatLong(&ll[0], &ll[1], toPosNorm);
ll[0] += consume[0];
ll[1] -= consume[1];
ll[1] = bx::clamp(ll[1], 0.02f, 0.98f);
const bx::Vec3 tmp = bx::fromLatLong(ll[0], ll[1]);
const bx::Vec3 diff = bx::mul(bx::sub(tmp, toPosNorm), toPosLen);
m_pos.curr = bx::add(m_pos.curr, diff);
m_pos.dest = bx::add(m_pos.dest, diff);
}
void update(float _dt)
{
const float amount = bx::min(_dt / 0.12f, 1.0f);
consumeOrbit(amount);
m_target.curr = bx::lerp(m_target.curr, m_target.dest, amount);
m_pos.curr = bx::lerp(m_pos.curr, m_pos.dest, amount);
}
void envViewMtx(float* _mtx)
{
const bx::Vec3 toTarget = bx::sub(m_target.curr, m_pos.curr);
const float toTargetLen = bx::length(toTarget);
const float invToTargetLen = 1.0f / (toTargetLen + bx::kFloatMin);
const bx::Vec3 toTargetNorm = bx::mul(toTarget, invToTargetLen);
const bx::Vec3 right = bx::normalize(bx::cross({ 0.0f, 1.0f, 0.0f }, toTargetNorm) );
const bx::Vec3 up = bx::normalize(bx::cross(toTargetNorm, right) );
_mtx[ 0] = right.x;
_mtx[ 1] = right.y;
_mtx[ 2] = right.z;
_mtx[ 3] = 0.0f;
_mtx[ 4] = up.x;
_mtx[ 5] = up.y;
_mtx[ 6] = up.z;
_mtx[ 7] = 0.0f;
_mtx[ 8] = toTargetNorm.x;
_mtx[ 9] = toTargetNorm.y;
_mtx[10] = toTargetNorm.z;
_mtx[11] = 0.0f;
_mtx[12] = 0.0f;
_mtx[13] = 0.0f;
_mtx[14] = 0.0f;
_mtx[15] = 1.0f;
}
struct Interp3f
{
bx::Vec3 curr;
bx::Vec3 dest;
};
Interp3f m_target;
Interp3f m_pos;
float m_orbit[2];
};
struct Mouse
{
Mouse()
: m_dx(0.0f)
, m_dy(0.0f)
, m_prevMx(0.0f)
, m_prevMy(0.0f)
, m_scroll(0)
, m_scrollPrev(0)
{
}
void update(float _mx, float _my, int32_t _mz, uint32_t _width, uint32_t _height)
{
const float widthf = float(int32_t(_width));
const float heightf = float(int32_t(_height));
// Delta movement.
m_dx = float(_mx - m_prevMx) / widthf;
m_dy = float(_my - m_prevMy) / heightf;
m_prevMx = _mx;
m_prevMy = _my;
// Scroll.
m_scroll = _mz - m_scrollPrev;
m_scrollPrev = _mz;
}
float m_dx; // Screen space.
float m_dy;
float m_prevMx;
float m_prevMy;
int32_t m_scroll;
int32_t m_scrollPrev;
};
struct PosVertex
{
float m_x;
float m_y;
float m_z;
static void init()
{
ms_layout
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.end();
};
static bgfx::VertexLayout ms_layout;
};
bgfx::VertexLayout PosVertex::ms_layout;
static PosVertex s_cubeVertices[8] =
{
{-0.5f, 0.5f, 0.5f},
{ 0.5f, 0.5f, 0.5f},
{-0.5f, -0.5f, 0.5f},
{ 0.5f, -0.5f, 0.5f},
{-0.5f, 0.5f, -0.5f},
{ 0.5f, 0.5f, -0.5f},
{-0.5f, -0.5f, -0.5f},
{ 0.5f, -0.5f, -0.5f},
};
static const uint16_t s_cubeIndices[36] =
{
0, 1, 2, // 0
1, 3, 2,
4, 6, 5, // 2
5, 6, 7,
0, 2, 4, // 4
4, 2, 6,
1, 5, 3, // 6
5, 7, 3,
0, 4, 1, // 8
4, 5, 1,
2, 3, 6, // 10
6, 3, 7,
};
struct RenderPass
{
enum Enum
{
Occlusion = 1 << 0,
MainPass = 1 << 1,
All = Occlusion | MainPass
};
};
// All the per-instance data we store
struct InstanceData
{
float m_world[16];
float m_bboxMin[4];
float m_bboxMax[4];
};
//A description of each prop
struct Prop
{
PosVertex* m_vertices;
uint16_t* m_indices;
InstanceData* m_instances;
bgfx::VertexBufferHandle m_vertexbufferHandle;
bgfx::IndexBufferHandle m_indexbufferHandle;
uint16_t m_noofVertices;
uint16_t m_noofIndices;
uint16_t m_noofInstances;
uint16_t m_materialID;
RenderPass::Enum m_renderPass;
};
//A simplistic material, comprised of a color only
struct Material
{
float m_color[4];
};
inline void setVector4(float* dest, float x, float y, float z, float w)
{
dest[0] = x;
dest[1] = y;
dest[2] = z;
dest[3] = w;
}
//Sets up a prop
void createCubeMesh(Prop& prop)
{
prop.m_noofVertices = 8;
prop.m_noofIndices = 36;
prop.m_vertices = new PosVertex[prop.m_noofVertices];
prop.m_indices = new uint16_t[prop.m_noofIndices];
bx::memCopy(prop.m_vertices, s_cubeVertices, prop.m_noofVertices * PosVertex::ms_layout.getStride());
bx::memCopy(prop.m_indices, s_cubeIndices, prop.m_noofIndices * sizeof(uint16_t));
prop.m_vertexbufferHandle = bgfx::createVertexBuffer(
bgfx::makeRef(prop.m_vertices, prop.m_noofVertices * PosVertex::ms_layout.getStride()),
PosVertex::ms_layout);
prop.m_indexbufferHandle = bgfx::createIndexBuffer(bgfx::makeRef(prop.m_indices, prop.m_noofIndices * sizeof(uint16_t)));
}
//returns a random number between 0 and 1
float rand01()
{
return rand() / (float)RAND_MAX;
}
class GPUDrivenRendering : public entry::AppI
{
public:
GPUDrivenRendering(const char* _name, const char* _description, const char* _url)
: entry::AppI(_name, _description, _url)
{
}
void init(int32_t _argc, const char* const* _argv, uint32_t _width, uint32_t _height) override
{
Args args(_argc, _argv);
m_width = _width;
m_height = _height;
//find largest pow of two dims less than backbuffer size
m_hiZwidth = (uint32_t)bx::pow(2.0f, bx::floor(bx::log2(float(m_width ) ) ) );
m_hiZheight = (uint32_t)bx::pow(2.0f, bx::floor(bx::log2(float(m_height) ) ) );
m_debug = BGFX_DEBUG_TEXT;
m_reset = BGFX_RESET_VSYNC;
bgfx::Init init;
init.type = args.m_type;
init.vendorId = args.m_pciId;
init.resolution.width = m_width;
init.resolution.height = m_height;
init.resolution.reset = m_reset;
bgfx::init(init);
// Enable debug text.
bgfx::setDebug(m_debug);
// Create uniforms and samplers.
u_inputRTSize = bgfx::createUniform("u_inputRTSize", bgfx::UniformType::Vec4);
u_cullingConfig = bgfx::createUniform("u_cullingConfig", bgfx::UniformType::Vec4);
u_color = bgfx::createUniform("u_color", bgfx::UniformType::Vec4, 32);
s_texOcclusionDepth = bgfx::createUniform("s_texOcclusionDepth", bgfx::UniformType::Sampler);
//create props
{
m_totalInstancesCount = 0;
// Create vertex stream declaration.
PosVertex::init();
m_noofProps = 0;
m_props = new Prop[s_maxNoofProps];
//first create space for some materials
m_materials = new Material[s_maxNoofProps];
m_noofMaterials = 0;
//add a ground plane
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 1;
prop.m_instances = new InstanceData[prop.m_noofInstances];
bx::mtxSRT(prop.m_instances->m_world
, 100.0f, 0.1f, 100.0f
, 0.0f, 0.0f, 0.0f
, 0.0f, 0.0f, 0.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances->m_bboxMin, temp, prop.m_instances->m_world);
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances->m_bboxMax, temp, prop.m_instances->m_world);
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_color, 0.0f, 0.6f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add a few instances of the occluding mesh
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::All;
//create prop
createCubeMesh(prop);
//add a few instances of the wall mesh
prop.m_noofInstances = 25;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
//calculate world position
bx::mtxSRT(prop.m_instances[i].m_world
, 40.0f, 10.0f, 0.1f
, 0.0f, ( rand01() * 120.0f - 60.0f) * 3.1459f / 180.0f, 0.0f
, rand01() * 100.0f - 50.0f, 5.0f, rand01() * 100.0f - 50.0f
);
//calculate bounding box and transform to world space
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world );
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world );
}
//set the material ID. Will be used in the shader to select the material
prop.m_materialID = m_noofMaterials;
//add a "material" for this prop
setVector4(m_materials[prop.m_materialID].m_color, 0.0f, 0.0f, 1.0f, 0.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add a few "regular" props
{
//add cubes
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 200;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
bx::mtxSRT(prop.m_instances[i].m_world
, 2.0f, 2.0f, 2.0f
, 0.0f, 0.0f, 0.0f
, rand01() * 100.0f - 50.0f, 1.0f, rand01() * 100.0f - 50.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world);
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world);
}
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_color, 1.0f, 1.0f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
//add some more cubes
{
Prop& prop = m_props[m_noofProps++];
prop.m_renderPass = RenderPass::MainPass;
createCubeMesh(prop);
prop.m_noofInstances = 300;
prop.m_instances = new InstanceData[prop.m_noofInstances];
for (int i = 0; i < prop.m_noofInstances; i++)
{
bx::mtxSRT(prop.m_instances[i].m_world
, 2.0f, 4.0f, 2.0f
, 0.0f, 0.0f, 0.0f
, rand01() * 100.0f - 50.0f, 2.0f, rand01() * 100.0f - 50.0f
);
float temp[4];
setVector4(temp, -0.5f, -0.5f, -0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMin, temp, prop.m_instances[i].m_world );
setVector4(temp, 0.5f, 0.5f, 0.5f, 1.0f);
bx::vec4MulMtx(prop.m_instances[i].m_bboxMax, temp, prop.m_instances[i].m_world);
}
prop.m_materialID = m_noofMaterials;
setVector4(m_materials[prop.m_materialID].m_color, 1.0f, 0.0f, 0.0f, 1.0f);
m_noofMaterials++;
m_totalInstancesCount += prop.m_noofInstances;
}
}
}
//Setup Occlusion pass
{
const uint64_t tsFlags = 0
| BGFX_TEXTURE_RT
| BGFX_SAMPLER_MIN_POINT
| BGFX_SAMPLER_MAG_POINT
| BGFX_SAMPLER_MIP_POINT
| BGFX_SAMPLER_U_CLAMP
| BGFX_SAMPLER_V_CLAMP
;
// Create buffers for the HiZ pass
m_hiZDepthBuffer = bgfx::createFrameBuffer(uint16_t(m_hiZwidth), uint16_t(m_hiZheight), bgfx::TextureFormat::D32, tsFlags);
bgfx::TextureHandle buffer = bgfx::createTexture2D(uint16_t(m_hiZwidth), uint16_t(m_hiZheight), true, 1, bgfx::TextureFormat::R32F, BGFX_TEXTURE_COMPUTE_WRITE | tsFlags);
m_hiZBuffer = bgfx::createFrameBuffer(1, &buffer, true);
//how many mip will the Hi Z buffer have?
m_noofHiZMips = (uint8_t)(1 + bx::floor(bx::log2(float(bx::max(m_hiZwidth, m_hiZheight) ) ) ) );
// Setup compute shader buffers
//The compute shader will write how many unoccluded instances per drawcall there are here
m_drawcallInstanceCounts = bgfx::createDynamicIndexBuffer(s_maxNoofProps, BGFX_BUFFER_INDEX32 | BGFX_BUFFER_COMPUTE_READ_WRITE);
//the compute shader will write the result of the occlusion test for each instance here
m_instancePredicates = bgfx::createDynamicIndexBuffer(s_maxNoofInstances, BGFX_BUFFER_COMPUTE_READ_WRITE);
//bounding box for each instance, will be fed to the compute shader to calculate occlusion
{
bgfx::VertexLayout computeVertexLayout;
computeVertexLayout.begin()
.add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
.end();
//initialise the buffer with the bounding boxes of all instances
const int sizeOfBuffer = 2 * 4 * m_totalInstancesCount;
float* boundingBoxes = new float[sizeOfBuffer];
float* data = boundingBoxes;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
const uint32_t numInstances = prop.m_noofInstances;
for (uint32_t j = 0; j < numInstances; j++)
{
bx::memCopy(data, prop.m_instances[j].m_bboxMin, 3 * sizeof(float));
data[3] = (float)i; // store the drawcall ID here to avoid creating a separate buffer
data += 4;
bx::memCopy(data, prop.m_instances[j].m_bboxMax, 3 * sizeof(float));
data += 4;
}
}
const bgfx::Memory* mem = bgfx::makeRef(boundingBoxes, sizeof(float) * sizeOfBuffer);
m_instanceBoundingBoxes = bgfx::createDynamicVertexBuffer(mem, computeVertexLayout, BGFX_BUFFER_COMPUTE_READ);
}
//pre and post occlusion culling instance data buffers
{
bgfx::VertexLayout instanceBufferVertexLayout;
instanceBufferVertexLayout.begin()
.add(bgfx::Attrib::TexCoord0, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord1, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord2, 4, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord3, 4, bgfx::AttribType::Float)
.end();
//initialise the buffer with data for all instances
//Currently we only store a world matrix (16 floats)
const int sizeOfBuffer = 16 * m_totalInstancesCount;
float* instanceData = new float[sizeOfBuffer];
float* data = instanceData;
for (uint16_t ii = 0; ii < m_noofProps; ++ii)
{
Prop& prop = m_props[ii];
const uint32_t numInstances = prop.m_noofInstances;
for (uint32_t jj = 0; jj < numInstances; ++jj)
{
bx::memCopy(data, prop.m_instances[jj].m_world, 16 * sizeof(float) );
data[3] = float(ii); // store the drawcall ID here to avoid creating a separate buffer
data += 16;
}
}
const bgfx::Memory* mem = bgfx::makeRef(instanceData, sizeof(float) * sizeOfBuffer);
//pre occlusion buffer
m_instanceBuffer = bgfx::createVertexBuffer(mem, instanceBufferVertexLayout, BGFX_BUFFER_COMPUTE_READ);
//post occlusion buffer
m_culledInstanceBuffer = bgfx::createDynamicVertexBuffer(4 * m_totalInstancesCount, instanceBufferVertexLayout, BGFX_BUFFER_COMPUTE_WRITE);
}
//we use one "drawcall" per prop to render all its instances
m_indirectBuffer = bgfx::createIndirectBuffer(m_noofProps);
// Create programs from shaders for occlusion pass.
m_programOcclusionPass = loadProgram("vs_gdr_render_occlusion", NULL);
m_programCopyZ = loadProgram("cs_gdr_copy_z", NULL);
m_programDownscaleHiZ = loadProgram("cs_gdr_downscale_hi_z", NULL);
m_programOccludeProps = loadProgram("cs_gdr_occlude_props", NULL);
m_programStreamCompaction = loadProgram("cs_gdr_stream_compaction", NULL);
// Set view RENDER_PASS_HIZ_ID clear state.
bgfx::setViewClear(RENDER_PASS_HIZ_ID
, BGFX_CLEAR_DEPTH
, 0x0
, 1.0f
, 0
);
}
// Setup Main pass
{
// Set view 0 clear state.
bgfx::setViewClear(RENDER_PASS_MAIN_ID
, BGFX_CLEAR_COLOR | BGFX_CLEAR_DEPTH
, 0x303030ff
, 1.0f
, 0
);
// Create program from shaders.
m_programMainPass = loadProgram("vs_gdr_instanced_indirect_rendering", "fs_gdr_instanced_indirect_rendering");
}
// Create static vertex buffer for all props.
// Calculate how many vertices/indices the master buffers will need.
uint16_t totalNoofVertices = 0;
uint16_t totalNoofIndices = 0;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
totalNoofVertices += prop.m_noofVertices;
totalNoofIndices += prop.m_noofIndices;
}
// CPU data to fill the master buffers
m_allPropVerticesDataCPU = new PosVertex[totalNoofVertices];
m_allPropIndicesDataCPU = new uint16_t[totalNoofIndices];
m_indirectBufferDataCPU = new uint32_t[m_noofProps * 3];
// Copy data over to the master buffers
PosVertex* propVerticesData = m_allPropVerticesDataCPU;
uint16_t* propIndicesData = m_allPropIndicesDataCPU;
uint16_t vertexBufferOffset = 0;
uint16_t indexBufferOffset = 0;
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
bx::memCopy(propVerticesData, prop.m_vertices, prop.m_noofVertices * sizeof(PosVertex));
bx::memCopy(propIndicesData, prop.m_indices, prop.m_noofIndices * sizeof(uint16_t));
propVerticesData += prop.m_noofVertices;
propIndicesData += prop.m_noofIndices;
m_indirectBufferDataCPU[ i * 3 ] = prop.m_noofIndices;
m_indirectBufferDataCPU[ i * 3 + 1] = indexBufferOffset;
m_indirectBufferDataCPU[ i * 3 + 2] = vertexBufferOffset;
indexBufferOffset += prop.m_noofIndices;
vertexBufferOffset += prop.m_noofVertices;
}
// Create master vertex buffer
m_allPropsVertexbufferHandle = bgfx::createVertexBuffer(
bgfx::makeRef(m_allPropVerticesDataCPU, totalNoofVertices * PosVertex::ms_layout.getStride())
, PosVertex::ms_layout
);
// Create master index buffer.
m_allPropsIndexbufferHandle = bgfx::createIndexBuffer(
bgfx::makeRef(m_allPropIndicesDataCPU, totalNoofIndices * sizeof(uint16_t) )
);
// Create buffer with const drawcall data which will be copied to the indirect buffer later.
m_indirectBufferData = bgfx::createIndexBuffer(
bgfx::makeRef(m_indirectBufferDataCPU, m_noofProps * 3 * sizeof(uint32_t)),
BGFX_BUFFER_COMPUTE_READ | BGFX_BUFFER_INDEX32
);
m_timeOffset = bx::getHPCounter();
m_useIndirect = true;
m_firstFrame = true;
imguiCreate();
}
int shutdown() override
{
imguiDestroy();
// Cleanup.
bgfx::destroy(m_programMainPass);
bgfx::destroy(m_programOcclusionPass);
bgfx::destroy(m_programCopyZ);
bgfx::destroy(m_programDownscaleHiZ);
bgfx::destroy(m_programOccludeProps);
bgfx::destroy(m_programStreamCompaction);
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
bgfx::destroy(prop.m_indexbufferHandle);
bgfx::destroy(prop.m_vertexbufferHandle);
delete[] prop.m_indices;
delete[] prop.m_vertices;
delete[] prop.m_instances;
}
delete[] m_props;
bgfx::destroy(m_hiZDepthBuffer);
bgfx::destroy(m_hiZBuffer);
bgfx::destroy(m_indirectBuffer);
bgfx::destroy(m_indirectBufferData);
bgfx::destroy(m_instanceBoundingBoxes);
bgfx::destroy(m_drawcallInstanceCounts);
bgfx::destroy(m_instancePredicates);
bgfx::destroy(m_instanceBuffer);
bgfx::destroy(m_culledInstanceBuffer);
bgfx::destroy(m_allPropsVertexbufferHandle);
bgfx::destroy(m_allPropsIndexbufferHandle);
bgfx::destroy(s_texOcclusionDepth);
bgfx::destroy(u_inputRTSize);
bgfx::destroy(u_cullingConfig);
bgfx::destroy(u_color);
delete[] m_allPropVerticesDataCPU;
delete[] m_allPropIndicesDataCPU;
delete[] m_indirectBufferDataCPU;
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}
//renders the occluders to a depth buffer
void renderOcclusionBufferPass()
{
// Setup the occlusion pass projection
bx::mtxProj(m_occlusionProj, 60.0f, float(m_hiZwidth) / float(m_hiZheight), 0.1f, 500.0f, bgfx::getCaps()->homogeneousDepth);
bgfx::setViewTransform(RENDER_PASS_HIZ_ID, m_mainView, m_occlusionProj);
bgfx::setViewFrameBuffer(RENDER_PASS_HIZ_ID, m_hiZDepthBuffer);
bgfx::setViewRect(RENDER_PASS_HIZ_ID, 0, 0, uint16_t(m_hiZwidth), uint16_t(m_hiZheight));
const uint16_t instanceStride = sizeof(InstanceData);
// render all instances of the occluder meshes
for (uint16_t i = 0; i < m_noofProps; i++)
{
Prop& prop = m_props[i];
if (prop.m_renderPass & RenderPass::Occlusion)
{
const uint32_t numInstances = prop.m_noofInstances;
// render instances to the occlusion buffer
if (numInstances == bgfx::getAvailInstanceDataBuffer(numInstances, instanceStride))
{
bgfx::InstanceDataBuffer instanceBuffer;
bgfx::allocInstanceDataBuffer(&instanceBuffer, numInstances, instanceStride);
InstanceData *data = (InstanceData *) instanceBuffer.data;
for (uint32_t j = 0; j < numInstances; j++)
{
//we only need the world matrix for the occlusion pass
bx::memCopy(data->m_world, prop.m_instances[j].m_world, sizeof(data->m_world));
data++;
}
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, prop.m_vertexbufferHandle);
bgfx::setIndexBuffer(prop.m_indexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(&instanceBuffer);
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
// Submit primitive for rendering to view.
bgfx::submit(RENDER_PASS_HIZ_ID, m_programOcclusionPass);
}
}
}
}
// downscale the occluder depth buffer to create a mipmap chain
void renderDownscalePass()
{
uint32_t width = m_hiZwidth;
uint32_t height = m_hiZheight;
// copy mip zero over to the hi Z buffer.
// We can't currently use blit as it requires same format and CopyResource is not exposed.
{
float inputRendertargetSize[4] = { (float)width, (float)height, 0.0f, 0.0f };
bgfx::setUniform(u_inputRTSize, inputRendertargetSize);
bgfx::setTexture(0, s_texOcclusionDepth, getTexture(m_hiZDepthBuffer, 0));
bgfx::setImage(1, getTexture(m_hiZBuffer, 0), 0, bgfx::Access::Write);
bgfx::dispatch(RENDER_PASS_HIZ_DOWNSCALE_ID, m_programCopyZ, width/16, height/16);
}
for (uint8_t lod = 1; lod < m_noofHiZMips; ++lod)
{
float inputRendertargetSize[4] = { (float)width, (float)height, 2.0f, 2.0f };
bgfx::setUniform(u_inputRTSize, inputRendertargetSize);
// down scale mip 1 onwards
width /= 2;
height /= 2;
bgfx::setImage(0, getTexture(m_hiZBuffer, 0), lod - 1, bgfx::Access::Read);
bgfx::setImage(1, getTexture(m_hiZBuffer, 0), lod, bgfx::Access::Write);
bgfx::dispatch(RENDER_PASS_HIZ_DOWNSCALE_ID, m_programDownscaleHiZ, width/16, height/16);
}
}
// perform the occlusion using the mip chain
void renderOccludePropsPass()
{
// run the computer shader to determine visibility of each instance
bgfx::setTexture(0, s_texOcclusionDepth, bgfx::getTexture(m_hiZBuffer, 0) );
bgfx::setBuffer(1, m_instanceBoundingBoxes, bgfx::Access::Read);
bgfx::setBuffer(2, m_drawcallInstanceCounts, bgfx::Access::ReadWrite);
bgfx::setBuffer(3, m_instancePredicates, bgfx::Access::Write);
float inputRendertargetSize[4] = { (float)m_hiZwidth, (float)m_hiZheight, 1.0f/ m_hiZwidth, 1.0f/ m_hiZheight };
bgfx::setUniform(u_inputRTSize, inputRendertargetSize);
// store a rounded-up, power of two instance count for the stream compaction step
float noofInstancesPowOf2 = bx::pow(2.0f, bx::floor(bx::log(m_totalInstancesCount) / bx::log(2.0f) ) + 1.0f);
float cullingConfig[4] =
{
(float)m_totalInstancesCount,
noofInstancesPowOf2,
(float)m_noofHiZMips,
(float)m_noofProps
};
bgfx::setUniform(u_cullingConfig, cullingConfig);
//set the view/projection transforms so that the compute shader can receive the viewProjection matrix automagically
bgfx::setViewTransform(RENDER_PASS_OCCLUDE_PROPS_ID, m_mainView, m_occlusionProj);
uint16_t groupX = bx::max<uint16_t>(m_totalInstancesCount / 64 + 1, 1);
bgfx::dispatch(RENDER_PASS_OCCLUDE_PROPS_ID, m_programOccludeProps, groupX, 1, 1);
// perform stream compaction to remove occluded instances
// the per drawcall data that is constant (noof indices/vertices and offsets to vertex/index buffers)
bgfx::setBuffer(0, m_indirectBufferData, bgfx::Access::Read);
// instance data for all instances (pre culling)
bgfx::setBuffer(1, m_instanceBuffer, bgfx::Access::Read);
// per instance visibility (output of culling pass)
bgfx::setBuffer(2, m_instancePredicates, bgfx::Access::Read);
// how many instances per drawcall
bgfx::setBuffer(3, m_drawcallInstanceCounts, bgfx::Access::ReadWrite);
// drawcall data that will drive drawIndirect
bgfx::setBuffer(4, m_indirectBuffer, bgfx::Access::ReadWrite);
// culled instance data
bgfx::setBuffer(5, m_culledInstanceBuffer, bgfx::Access::Write);
bgfx::setUniform(u_cullingConfig, cullingConfig);
bgfx::dispatch(RENDER_PASS_COMPACT_STREAM_ID, m_programStreamCompaction, 1, 1, 1);
}
// render the unoccluded props to the screen
void renderMainPass()
{
// Set view and projection matrix for view 0.
{
bgfx::setViewTransform(RENDER_PASS_MAIN_ID, m_mainView, m_mainProj);
// Set view 0 default viewport.
bgfx::setViewRect(RENDER_PASS_MAIN_ID, 0, 0, uint16_t(m_width), uint16_t(m_height));
}
// Set render states.
bgfx::setState(BGFX_STATE_DEFAULT);
const uint16_t instanceStride = sizeof(InstanceData);
// Set "material" data (currently a color only)
bgfx::setUniform(u_color, &m_materials[0].m_color, m_noofMaterials);
// We can't use indirect drawing for the first frame because the content of m_drawcallInstanceCounts
// is initially undefined.
if (m_useIndirect && !m_firstFrame)
{
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, m_allPropsVertexbufferHandle);
bgfx::setIndexBuffer( m_allPropsIndexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(m_culledInstanceBuffer, 0, m_totalInstancesCount );
bgfx::submit(RENDER_PASS_MAIN_ID, m_programMainPass, m_indirectBuffer, 0, m_noofProps);
}
else
{
// render all props using regular instancing
for (uint16_t ii = 0; ii < m_noofProps; ++ii)
{
Prop& prop = m_props[ii];
if (prop.m_renderPass & RenderPass::MainPass)
{
const uint32_t numInstances = prop.m_noofInstances;
if (numInstances == bgfx::getAvailInstanceDataBuffer(numInstances, instanceStride))
{
bgfx::InstanceDataBuffer instanceBuffer;
bgfx::allocInstanceDataBuffer(&instanceBuffer, numInstances, instanceStride);
InstanceData *data = (InstanceData *)instanceBuffer.data;
for (uint32_t jj = 0; jj < numInstances; ++jj)
{
//copy world matrix
bx::memCopy(data->m_world, prop.m_instances[jj].m_world, sizeof(data->m_world) );
//pack the material ID into the world transform
data->m_world[3] = float(prop.m_materialID);
data++;
}
// Set vertex and index buffer.
bgfx::setVertexBuffer(0, prop.m_vertexbufferHandle);
bgfx::setIndexBuffer(prop.m_indexbufferHandle);
// Set instance data buffer.
bgfx::setInstanceDataBuffer(&instanceBuffer);
bgfx::submit(RENDER_PASS_MAIN_ID, m_programMainPass);
}
}
}
}
m_firstFrame = false;
}
bool update() override
{
if (!entry::processEvents(m_width, m_height, m_debug, m_reset, &m_mouseState) )
{
imguiBeginFrame(m_mouseState.m_mx
, m_mouseState.m_my
, (m_mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
| (m_mouseState.m_buttons[entry::MouseButton::Middle] ? IMGUI_MBUT_MIDDLE : 0)
, m_mouseState.m_mz
, uint16_t(m_width)
, uint16_t(m_height)
);
showExampleDialog(this);
ImGui::SetNextWindowPos(
ImVec2(m_width - m_width / 5.0f - 10.0f, 10.0f)
, ImGuiCond_FirstUseEver
);
ImGui::SetNextWindowSize(
ImVec2(m_width / 5.0f, m_height / 6.0f)
, ImGuiCond_FirstUseEver
);
ImGui::Begin("Settings"
, NULL
, 0
);
ImGui::Checkbox("Use Draw Indirect", &m_useIndirect);
ImGui::End();
imguiEndFrame();
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency());
const float deltaTimeSec = float(double(frameTime) / freq);
// Camera.
const bool mouseOverGui = ImGui::MouseOverArea();
m_mouse.update(float(m_mouseState.m_mx), float(m_mouseState.m_my), m_mouseState.m_mz, m_width, m_height);
if (!mouseOverGui)
{
if (m_mouseState.m_buttons[entry::MouseButton::Left])
{
m_camera.orbit(m_mouse.m_dx, m_mouse.m_dy);
}
else if (m_mouseState.m_buttons[entry::MouseButton::Right])
{
m_camera.dolly(m_mouse.m_dx + m_mouse.m_dy);
}
else if (0 != m_mouse.m_scroll)
{
m_camera.dolly(float(m_mouse.m_scroll)*0.05f);
}
}
m_camera.update(deltaTimeSec);
// Get renderer capabilities info.
const bgfx::Caps* caps = bgfx::getCaps();
// Check if instancing is supported.
if (0 == (BGFX_CAPS_INSTANCING & caps->supported) )
{
// When instancing is not supported by GPU, implement alternative
// code path that doesn't use instancing.
float time = (float)((bx::getHPCounter() - m_timeOffset) / double(bx::getHPFrequency()));
bool blink = uint32_t(time*3.0f)&1;
bgfx::dbgTextPrintf(0, 0, blink ? 0x1f : 0x01, " Instancing is not supported by GPU. ");
}
else
{
// calculate main view and project matrices as they are typically reused between passes.
m_camera.mtxLookAt(m_mainView);
bx::mtxProj(m_mainProj, 60.0f, float(m_width) / float(m_height), 0.1f, 500.0f, bgfx::getCaps()->homogeneousDepth);
//submit drawcalls for all passes
renderOcclusionBufferPass();
renderDownscalePass();
renderOccludePropsPass();
renderMainPass();
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
return true;
}
return false;
}
entry::MouseState m_mouseState;
uint32_t m_width;
uint32_t m_height;
uint32_t m_hiZwidth;
uint32_t m_hiZheight;
uint32_t m_debug;
uint32_t m_reset;
float m_mainView[16];
float m_mainProj[16];
float m_occlusionProj[16];
bgfx::ProgramHandle m_programMainPass;
bgfx::ProgramHandle m_programOcclusionPass;
bgfx::ProgramHandle m_programCopyZ;
bgfx::ProgramHandle m_programDownscaleHiZ;
bgfx::ProgramHandle m_programOccludeProps;
bgfx::ProgramHandle m_programStreamCompaction;
bgfx::FrameBufferHandle m_hiZDepthBuffer;
bgfx::FrameBufferHandle m_hiZBuffer;
bgfx::IndirectBufferHandle m_indirectBuffer;
bgfx::VertexBufferHandle m_allPropsVertexbufferHandle;
bgfx::IndexBufferHandle m_allPropsIndexbufferHandle;
bgfx::IndexBufferHandle m_indirectBufferData;
PosVertex* m_allPropVerticesDataCPU;
uint16_t* m_allPropIndicesDataCPU;
uint32_t* m_indirectBufferDataCPU;
bgfx::DynamicVertexBufferHandle m_instanceBoundingBoxes;
bgfx::DynamicIndexBufferHandle m_drawcallInstanceCounts;
bgfx::DynamicIndexBufferHandle m_instancePredicates;
bgfx::VertexBufferHandle m_instanceBuffer;
bgfx::DynamicVertexBufferHandle m_culledInstanceBuffer;
bgfx::UniformHandle s_texOcclusionDepth;
bgfx::UniformHandle u_inputRTSize;
bgfx::UniformHandle u_cullingConfig;
bgfx::UniformHandle u_color;
Prop* m_props;
Material* m_materials;
uint16_t m_noofProps;
uint16_t m_noofMaterials;
uint16_t m_totalInstancesCount;
static const uint16_t s_maxNoofProps = 10;
static const uint16_t s_maxNoofInstances = 2048;
int64_t m_timeOffset;
uint8_t m_noofHiZMips;
bool m_useIndirect;
bool m_firstFrame;
Camera m_camera;
Mouse m_mouse;
};
} // namespace
ENTRY_IMPLEMENT_MAIN(
GPUDrivenRendering
, "37-gpudrivenrendering"
, "GPU-Driven Rendering."
, "https://bkaradzic.github.io/bgfx/examples.html#gpudrivenrendering"
);
|