File: fcull.sh

package info (click to toggle)
mame 0.228%2Bdfsg.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 956,280 kB
  • sloc: cpp: 4,712,769; xml: 1,946,353; ansic: 829,986; sh: 49,187; lisp: 18,100; python: 17,897; makefile: 10,815; cs: 10,047; javascript: 8,196; yacc: 7,565; java: 7,151; objc: 5,791; asm: 4,639; perl: 2,850; ada: 1,681; lex: 1,174; pascal: 1,139; ruby: 317; awk: 35
file content (66 lines) | stat: -rw-r--r-- 2,010 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax);

struct Frustum
{
	vec4 planes[6];
};

/**
 * Extract Frustum Planes from MVP Matrix
 *
 * Based on "Fast Extraction of Viewing Frustum Planes from the World-
 * View-Projection Matrix", by Gil Gribb and Klaus Hartmann.
 * This procedure computes the planes of the frustum and normalizes
 * them.
 */
void loadFrustum(out Frustum f, mat4 mvp)
{
	for (int i = 0; i < 3; ++i)
	{
		for (int j = 0; j < 2; ++j)
		{
			f.planes[i*2+j].x = mtxGetElement(mvp, 0, 3) + (j == 0 ? mtxGetElement(mvp, 0, i) : -mtxGetElement(mvp, 0, i));
			f.planes[i*2+j].y = mtxGetElement(mvp, 1, 3) + (j == 0 ? mtxGetElement(mvp, 1, i) : -mtxGetElement(mvp, 1, i));
			f.planes[i*2+j].z = mtxGetElement(mvp, 2, 3) + (j == 0 ? mtxGetElement(mvp, 2, i) : -mtxGetElement(mvp, 2, i));
			f.planes[i*2+j].w = mtxGetElement(mvp, 3, 3) + (j == 0 ? mtxGetElement(mvp, 3, i) : -mtxGetElement(mvp, 3, i));
			f.planes[i*2+j]*= length(f.planes[i*2+j].xyz);
		}
	}
}

/**
 * Negative Vertex of an AABB
 *
 * This procedure computes the negative vertex of an AABB
 * given a normal.
 * See the View Frustum Culling tutorial @ LightHouse3D.com
 * http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
 */
vec3 negativeVertex(vec3 bmin, vec3 bmax, vec3 n)
{
	bvec3 b = greaterThan(n, vec3(0.0, 0.0, 0.0));
	return mix(bmin, bmax, b);
}

/**
 * Frustum-AABB Culling Test
 *
 * This procedure returns true if the AABB is either inside, or in
 * intersection with the frustum, and false otherwise.
 * The test is based on the View Frustum Culling tutorial @ LightHouse3D.com
 * http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
 */
bool frustumCullingTest(mat4 mvp, vec3 bmin, vec3 bmax)
{
	float a = 1.0f;
	Frustum f;

	loadFrustum(f, mvp);
	for (int i = 0; i < 6 && a >= 0.0f; ++i)
	{
		vec3 n = negativeVertex(bmin, bmax, f.planes[i].xyz);
		a = dot(vec4(n, 1.0f), f.planes[i]);
	}

	return (a >= 0.0);
}