1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*-
* Copyright 2012 Matthew Endsley
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted providing that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TINYSTL_UNORDERED_SET_H
#define TINYSTL_UNORDERED_SET_H
#include "buffer.h"
#include "hash.h"
#include "hash_base.h"
namespace tinystl {
template<typename Key, typename Alloc = TINYSTL_ALLOCATOR>
class unordered_set {
public:
unordered_set();
unordered_set(const unordered_set& other);
~unordered_set();
unordered_set& operator=(const unordered_set& other);
typedef unordered_hash_iterator<const unordered_hash_node<Key, void> > const_iterator;
typedef const_iterator iterator;
iterator begin() const;
iterator end() const;
void clear();
bool empty() const;
size_t size() const;
iterator find(const Key& key) const;
pair<iterator, bool> insert(const Key& key);
void erase(iterator where);
size_t erase(const Key& key);
void swap(unordered_set& other);
private:
typedef unordered_hash_node<Key, void>* pointer;
size_t m_size;
buffer<pointer, Alloc> m_buckets;
};
template<typename Key, typename Alloc>
unordered_set<Key, Alloc>::unordered_set()
: m_size(0)
{
buffer_init<pointer, Alloc>(&m_buckets);
buffer_resize<pointer, Alloc>(&m_buckets, 9, 0);
}
template<typename Key, typename Alloc>
unordered_set<Key, Alloc>::unordered_set(const unordered_set& other)
: m_size(other.m_size)
{
const size_t nbuckets = (size_t)(other.m_buckets.last - other.m_buckets.first);
buffer_init<pointer, Alloc>(&m_buckets);
buffer_resize<pointer, Alloc>(&m_buckets, nbuckets, 0);
for (pointer it = *other.m_buckets.first; it; it = it->next) {
unordered_hash_node<Key, void>* newnode = new(placeholder(), Alloc::static_allocate(sizeof(unordered_hash_node<Key, void>))) unordered_hash_node<Key, void>(*it);
newnode->next = newnode->prev = 0;
unordered_hash_node_insert(newnode, hash(it->first), m_buckets.first, nbuckets - 1);
}
}
template<typename Key, typename Alloc>
unordered_set<Key, Alloc>::~unordered_set() {
clear();
buffer_destroy<pointer, Alloc>(&m_buckets);
}
template<typename Key, typename Alloc>
unordered_set<Key, Alloc>& unordered_set<Key, Alloc>::operator=(const unordered_set<Key, Alloc>& other) {
unordered_set<Key, Alloc>(other).swap(*this);
return *this;
}
template<typename Key, typename Alloc>
inline typename unordered_set<Key, Alloc>::iterator unordered_set<Key, Alloc>::begin() const {
iterator cit;
cit.node = *m_buckets.first;
return cit;
}
template<typename Key, typename Alloc>
inline typename unordered_set<Key, Alloc>::iterator unordered_set<Key, Alloc>::end() const {
iterator cit;
cit.node = 0;
return cit;
}
template<typename Key, typename Alloc>
inline bool unordered_set<Key, Alloc>::empty() const {
return m_size == 0;
}
template<typename Key, typename Alloc>
inline size_t unordered_set<Key, Alloc>::size() const {
return m_size;
}
template<typename Key, typename Alloc>
inline void unordered_set<Key, Alloc>::clear() {
pointer it = *m_buckets.first;
while (it) {
const pointer next = it->next;
it->~unordered_hash_node<Key, void>();
Alloc::static_deallocate(it, sizeof(unordered_hash_node<Key, void>));
it = next;
}
m_buckets.last = m_buckets.first;
buffer_resize<pointer, Alloc>(&m_buckets, 9, 0);
m_size = 0;
}
template<typename Key, typename Alloc>
inline typename unordered_set<Key, Alloc>::iterator unordered_set<Key, Alloc>::find(const Key& key) const {
iterator result;
result.node = unordered_hash_find(key, m_buckets.first, (size_t)(m_buckets.last - m_buckets.first));
return result;
}
template<typename Key, typename Alloc>
inline pair<typename unordered_set<Key, Alloc>::iterator, bool> unordered_set<Key, Alloc>::insert(const Key& key) {
pair<iterator, bool> result;
result.second = false;
result.first = find(key);
if (result.first.node != 0)
return result;
unordered_hash_node<Key, void>* newnode = new(placeholder(), Alloc::static_allocate(sizeof(unordered_hash_node<Key, void>))) unordered_hash_node<Key, void>(key);
newnode->next = newnode->prev = 0;
const size_t nbuckets = (size_t)(m_buckets.last - m_buckets.first);
unordered_hash_node_insert(newnode, hash(key), m_buckets.first, nbuckets - 1);
++m_size;
if (m_size + 1 > 4 * nbuckets) {
pointer root = *m_buckets.first;
const size_t newnbuckets = ((size_t)(m_buckets.last - m_buckets.first) - 1) * 8;
m_buckets.last = m_buckets.first;
buffer_resize<pointer, Alloc>(&m_buckets, newnbuckets + 1, 0);
unordered_hash_node<Key, void>** buckets = m_buckets.first;
while (root) {
const pointer next = root->next;
root->next = root->prev = 0;
unordered_hash_node_insert(root, hash(root->first), buckets, newnbuckets);
root = next;
}
}
result.first.node = newnode;
result.second = true;
return result;
}
template<typename Key, typename Alloc>
inline void unordered_set<Key, Alloc>::erase(iterator where) {
unordered_hash_node_erase(where.node, hash(where.node->first), m_buckets.first, (size_t)(m_buckets.last - m_buckets.first) - 1);
where.node->~unordered_hash_node<Key, void>();
Alloc::static_deallocate((void*)where.node, sizeof(unordered_hash_node<Key, void>));
--m_size;
}
template<typename Key, typename Alloc>
inline size_t unordered_set<Key, Alloc>::erase(const Key& key) {
const iterator it = find(key);
if (it.node == 0)
return 0;
erase(it);
return 1;
}
template <typename Key, typename Alloc>
void unordered_set<Key, Alloc>::swap(unordered_set& other) {
size_t tsize = other.m_size;
other.m_size = m_size, m_size = tsize;
buffer_swap(&m_buckets, &other.m_buckets);
}
}
#endif
|